On the Parameterized Complexity of Happy Vertex Coloring

Let G be a graph, and $$c: V(G) \rightarrow [k]$$ be a coloring of vertices in G. A vertex $$u \in V(G)$$ is happy with respect to c if for all $$v \in N_G(u)$$ , we have $$c(u)=c(v)$$ , i.e. all the neighbors of u have color same as that of u. The problem Maximum Happy Vertices takes as an input a...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Algorithms Vol. 10765; pp. 103 - 115
Main Author Agrawal, Akanksha
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319788248
9783319788241
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-78825-8_9

Cover

More Information
Summary:Let G be a graph, and $$c: V(G) \rightarrow [k]$$ be a coloring of vertices in G. A vertex $$u \in V(G)$$ is happy with respect to c if for all $$v \in N_G(u)$$ , we have $$c(u)=c(v)$$ , i.e. all the neighbors of u have color same as that of u. The problem Maximum Happy Vertices takes as an input a graph G, an integer k, a vertex subset $$S \subseteq V(G)$$ , and a (partial) coloring $$c: S \rightarrow [k]$$ of vertices in S. The goal is to find a coloring $$\tilde{c}: V(G) \rightarrow [k]$$ such that $$\tilde{c}|_S=c$$ , i.e. $$\tilde{c}$$ extends the partial coloring c to a coloring of vertices in G and the number of happy vertices in G is maximized. For the family of trees, Aravind et al. [1] gave a linear time algorithm for Maximum Happy Vertices for every fixed k, along with the edge variant of the problem. As an open problem, they stated whether Maximum Happy Vertices admits a linear time algorithm on graphs of bounded (constant) treewidth for every fixed k. In this paper, we study the problem Maximum Happy Vertices for graphs of bounded treewidth and give a linear time algorithm for every fixed k and (constant) treewidth of the graph. We also study the problem Maximum Happy Vertices with a different parameterization, which we call Happy Vertex Coloring. The problem Happy Vertex Coloring takes as an input a graph G, integers $$\ell $$ and k, a vertex subset $$S \subseteq V(G)$$ , and a coloring $$c: S \rightarrow [k]$$ . The goal is to decide if there exist a coloring $$\tilde{c}: V(G) \rightarrow [k]$$ such that $$\tilde{c}|_S=c$$ and $$|H| \ge \ell $$ , where H is the set of happy vertices in G with respect to $$\tilde{c}$$ . We show that Happy Vertex Coloring is W[1]-hard when parameterized by $$\ell $$ . We also give a kernel for Happy Vertex Coloring with $$\mathcal {O}(k^2\ell ^2)$$ vertices.
Bibliography:Due to space limitations most proofs have been omitted. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreements no. 306992 (PARAPPROX).
Original Abstract: Let G be a graph, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: V(G) \rightarrow [k]$$\end{document} be a coloring of vertices in G. A vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in V(G)$$\end{document} is happy with respect to c if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in N_G(u)$$\end{document}, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(u)=c(v)$$\end{document}, i.e. all the neighbors of u have color same as that of u. The problem Maximum Happy Vertices takes as an input a graph G, an integer k, a vertex subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G)$$\end{document}, and a (partial) coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: S \rightarrow [k]$$\end{document} of vertices in S. The goal is to find a coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}: V(G) \rightarrow [k]$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}|_S=c$$\end{document}, i.e.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}$$\end{document} extends the partial coloring c to a coloring of vertices in G and the number of happy vertices in G is maximized. For the family of trees, Aravind et al. [1] gave a linear time algorithm for Maximum Happy Vertices for every fixed k, along with the edge variant of the problem. As an open problem, they stated whether Maximum Happy Vertices admits a linear time algorithm on graphs of bounded (constant) treewidth for every fixed k. In this paper, we study the problem Maximum Happy Vertices for graphs of bounded treewidth and give a linear time algorithm for every fixed k and (constant) treewidth of the graph. We also study the problem Maximum Happy Vertices with a different parameterization, which we call Happy Vertex Coloring. The problem Happy Vertex Coloring takes as an input a graph G, integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and k, a vertex subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G)$$\end{document}, and a coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: S \rightarrow [k]$$\end{document}. The goal is to decide if there exist a coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}: V(G) \rightarrow [k]$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}|_S=c$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H| \ge \ell $$\end{document}, where H is the set of happy vertices in G with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}$$\end{document}. We show that Happy Vertex Coloring is W[1]-hard when parameterized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. We also give a kernel for Happy Vertex Coloring with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^2\ell ^2)$$\end{document} vertices.
ISBN:3319788248
9783319788241
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-78825-8_9