On the Parameterized Complexity of Happy Vertex Coloring
Let G be a graph, and $$c: V(G) \rightarrow [k]$$ be a coloring of vertices in G. A vertex $$u \in V(G)$$ is happy with respect to c if for all $$v \in N_G(u)$$ , we have $$c(u)=c(v)$$ , i.e. all the neighbors of u have color same as that of u. The problem Maximum Happy Vertices takes as an input a...
Saved in:
| Published in | Combinatorial Algorithms Vol. 10765; pp. 103 - 115 |
|---|---|
| Main Author | |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319788248 9783319788241 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-78825-8_9 |
Cover
| Summary: | Let G be a graph, and $$c: V(G) \rightarrow [k]$$ be a coloring of vertices in G. A vertex $$u \in V(G)$$ is happy with respect to c if for all $$v \in N_G(u)$$ , we have $$c(u)=c(v)$$ , i.e. all the neighbors of u have color same as that of u. The problem Maximum Happy Vertices takes as an input a graph G, an integer k, a vertex subset $$S \subseteq V(G)$$ , and a (partial) coloring $$c: S \rightarrow [k]$$ of vertices in S. The goal is to find a coloring $$\tilde{c}: V(G) \rightarrow [k]$$ such that $$\tilde{c}|_S=c$$ , i.e. $$\tilde{c}$$ extends the partial coloring c to a coloring of vertices in G and the number of happy vertices in G is maximized. For the family of trees, Aravind et al. [1] gave a linear time algorithm for Maximum Happy Vertices for every fixed k, along with the edge variant of the problem. As an open problem, they stated whether Maximum Happy Vertices admits a linear time algorithm on graphs of bounded (constant) treewidth for every fixed k. In this paper, we study the problem Maximum Happy Vertices for graphs of bounded treewidth and give a linear time algorithm for every fixed k and (constant) treewidth of the graph. We also study the problem Maximum Happy Vertices with a different parameterization, which we call Happy Vertex Coloring. The problem Happy Vertex Coloring takes as an input a graph G, integers $$\ell $$ and k, a vertex subset $$S \subseteq V(G)$$ , and a coloring $$c: S \rightarrow [k]$$ . The goal is to decide if there exist a coloring $$\tilde{c}: V(G) \rightarrow [k]$$ such that $$\tilde{c}|_S=c$$ and $$|H| \ge \ell $$ , where H is the set of happy vertices in G with respect to $$\tilde{c}$$ . We show that Happy Vertex Coloring is W[1]-hard when parameterized by $$\ell $$ . We also give a kernel for Happy Vertex Coloring with $$\mathcal {O}(k^2\ell ^2)$$ vertices. |
|---|---|
| Bibliography: | Due to space limitations most proofs have been omitted. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreements no. 306992 (PARAPPROX). Original Abstract: Let G be a graph, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: V(G) \rightarrow [k]$$\end{document} be a coloring of vertices in G. A vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in V(G)$$\end{document} is happy with respect to c if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in N_G(u)$$\end{document}, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(u)=c(v)$$\end{document}, i.e. all the neighbors of u have color same as that of u. The problem Maximum Happy Vertices takes as an input a graph G, an integer k, a vertex subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G)$$\end{document}, and a (partial) coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: S \rightarrow [k]$$\end{document} of vertices in S. The goal is to find a coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}: V(G) \rightarrow [k]$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}|_S=c$$\end{document}, i.e.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}$$\end{document} extends the partial coloring c to a coloring of vertices in G and the number of happy vertices in G is maximized. For the family of trees, Aravind et al. [1] gave a linear time algorithm for Maximum Happy Vertices for every fixed k, along with the edge variant of the problem. As an open problem, they stated whether Maximum Happy Vertices admits a linear time algorithm on graphs of bounded (constant) treewidth for every fixed k. In this paper, we study the problem Maximum Happy Vertices for graphs of bounded treewidth and give a linear time algorithm for every fixed k and (constant) treewidth of the graph. We also study the problem Maximum Happy Vertices with a different parameterization, which we call Happy Vertex Coloring. The problem Happy Vertex Coloring takes as an input a graph G, integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and k, a vertex subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G)$$\end{document}, and a coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c: S \rightarrow [k]$$\end{document}. The goal is to decide if there exist a coloring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}: V(G) \rightarrow [k]$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}|_S=c$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H| \ge \ell $$\end{document}, where H is the set of happy vertices in G with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{c}$$\end{document}. We show that Happy Vertex Coloring is W[1]-hard when parameterized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. We also give a kernel for Happy Vertex Coloring with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(k^2\ell ^2)$$\end{document} vertices. |
| ISBN: | 3319788248 9783319788241 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-319-78825-8_9 |