A Faster Algorithm for Computing Maximal $$\alpha $$ -gapped Repeats in a String
A string $$x = uvu$$ with both u, v being non-empty is called a gapped repeat with period $$p = |uv|$$ , and is denoted by pair (x, p). If $$p \le \alpha (|x|-p)$$ with $$\alpha > 1$$ , then (x, p) is called an $$\alpha $$ -gapped repeat. An occurrence $$[i, i+|x|-1]$$ of an $$\alpha $$ -gapped r...
Saved in:
| Published in | String Processing and Information Retrieval pp. 124 - 136 |
|---|---|
| Main Authors | , , , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Cham
Springer International Publishing
01.01.2015
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319238258 3319238256 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-23826-5_13 |
Cover
| Summary: | A string $$x = uvu$$ with both u, v being non-empty is called a gapped repeat with period $$p = |uv|$$ , and is denoted by pair (x, p). If $$p \le \alpha (|x|-p)$$ with $$\alpha > 1$$ , then (x, p) is called an $$\alpha $$ -gapped repeat. An occurrence $$[i, i+|x|-1]$$ of an $$\alpha $$ -gapped repeat (x, p) in a string w is called a maximal $$\alpha $$ -gapped repeat of w, if it cannot be extended either to the left or to the right in w with the same period p. Kolpakov et al. (CPM 2014) showed that, given a string of length n over a constant alphabet, all the occurrences of maximal $$\alpha $$ -gapped repeats in the string can be computed in $$O(\alpha ^2 n + occ )$$ time, where $$ occ $$ is the number of occurrences. In this paper, we propose a faster $$O(\alpha n + occ )$$ -time algorithm to solve this problem, improving the result of Kolpakov et al. by a factor of $$\alpha $$ . |
|---|---|
| Bibliography: | Original Abstract: A string \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = uvu$$\end{document} with both u, v being non-empty is called a gapped repeat with period\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = |uv|$$\end{document}, and is denoted by pair (x, p). If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \le \alpha (|x|-p)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 1$$\end{document}, then (x, p) is called an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeat. An occurrence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[i, i+|x|-1]$$\end{document} of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeat (x, p) in a string w is called a maximal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeat of w, if it cannot be extended either to the left or to the right in w with the same period p. Kolpakov et al. (CPM 2014) showed that, given a string of length n over a constant alphabet, all the occurrences of maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeats in the string can be computed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha ^2 n + occ )$$\end{document} time, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ occ $$\end{document} is the number of occurrences. In this paper, we propose a faster \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha n + occ )$$\end{document}-time algorithm to solve this problem, improving the result of Kolpakov et al. by a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Original Title: A Faster Algorithm for Computing Maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped Repeats in a String |
| ISBN: | 9783319238258 3319238256 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-319-23826-5_13 |