A Faster Algorithm for Computing Maximal $$\alpha $$ -gapped Repeats in a String

A string $$x = uvu$$ with both u, v being non-empty is called a gapped repeat with period $$p = |uv|$$ , and is denoted by pair (x, p). If $$p \le \alpha (|x|-p)$$ with $$\alpha > 1$$ , then (x, p) is called an $$\alpha $$ -gapped repeat. An occurrence $$[i, i+|x|-1]$$ of an $$\alpha $$ -gapped r...

Full description

Saved in:
Bibliographic Details
Published inString Processing and Information Retrieval pp. 124 - 136
Main Authors Tanimura, Yuka, Fujishige, Yuta, I, Tomohiro, Inenaga, Shunsuke, Bannai, Hideo, Takeda, Masayuki
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 01.01.2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319238258
3319238256
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-23826-5_13

Cover

More Information
Summary:A string $$x = uvu$$ with both u, v being non-empty is called a gapped repeat with period $$p = |uv|$$ , and is denoted by pair (x, p). If $$p \le \alpha (|x|-p)$$ with $$\alpha > 1$$ , then (x, p) is called an $$\alpha $$ -gapped repeat. An occurrence $$[i, i+|x|-1]$$ of an $$\alpha $$ -gapped repeat (x, p) in a string w is called a maximal $$\alpha $$ -gapped repeat of w, if it cannot be extended either to the left or to the right in w with the same period p. Kolpakov et al. (CPM 2014) showed that, given a string of length n over a constant alphabet, all the occurrences of maximal $$\alpha $$ -gapped repeats in the string can be computed in $$O(\alpha ^2 n + occ )$$ time, where $$ occ $$ is the number of occurrences. In this paper, we propose a faster $$O(\alpha n + occ )$$ -time algorithm to solve this problem, improving the result of Kolpakov et al. by a factor of $$\alpha $$ .
Bibliography:Original Abstract: A string \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = uvu$$\end{document} with both u, v being non-empty is called a gapped repeat with period\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = |uv|$$\end{document}, and is denoted by pair (x, p). If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \le \alpha (|x|-p)$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 1$$\end{document}, then (x, p) is called an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeat. An occurrence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[i, i+|x|-1]$$\end{document} of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeat (x, p) in a string w is called a maximal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeat of w, if it cannot be extended either to the left or to the right in w with the same period p. Kolpakov et al. (CPM 2014) showed that, given a string of length n over a constant alphabet, all the occurrences of maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped repeats in the string can be computed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha ^2 n + occ )$$\end{document} time, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ occ $$\end{document} is the number of occurrences. In this paper, we propose a faster \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha n + occ )$$\end{document}-time algorithm to solve this problem, improving the result of Kolpakov et al. by a factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
Original Title: A Faster Algorithm for Computing Maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-gapped Repeats in a String
ISBN:9783319238258
3319238256
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-23826-5_13