IV.感染症の数理モデルと対策

新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策判断の核をなす重要なエビデンスとなる.日本ではこれまで広く取り上げられることが少ない領域であったが,COVID-19の世界的な流行により注目の集まる研究分野である.本稿では,COVID-19の疫学的な知見に加えて,感染症数理モデルの基礎的な考え方について述べる....

Full description

Saved in:
Bibliographic Details
Published in日本内科学会雑誌 Vol. 109; no. 11; pp. 2276 - 2280
Main Authors 鈴木, 絢子, 西浦, 博
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本内科学会 10.11.2020
Subjects
Online AccessGet full text
ISSN0021-5384
1883-2083
DOI10.2169/naika.109.2276

Cover

Abstract 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策判断の核をなす重要なエビデンスとなる.日本ではこれまで広く取り上げられることが少ない領域であったが,COVID-19の世界的な流行により注目の集まる研究分野である.本稿では,COVID-19の疫学的な知見に加えて,感染症数理モデルの基礎的な考え方について述べる.
AbstractList 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策判断の核をなす重要なエビデンスとなる.日本ではこれまで広く取り上げられることが少ない領域であったが,COVID-19の世界的な流行により注目の集まる研究分野である.本稿では,COVID-19の疫学的な知見に加えて,感染症数理モデルの基礎的な考え方について述べる.
Author 鈴木, 絢子
西浦, 博
Author_xml – sequence: 1
  fullname: 鈴木, 絢子
  organization: 京都大学大学院医学研究科社会健康医学系専攻環境衛生学分野
– sequence: 1
  fullname: 西浦, 博
  organization: 京都大学大学院医学研究科社会健康医学系専攻環境衛生学分野
BookMark eNo9jz1Lw0AYgA-pYKxd_Q8OiffeR-5ulOBHoeCirsfdJdXEGiXp4lgqdhNB1LHgJIgfP0D8M8Fk9C9oqzg9wwMPPMuolZ_mCUKrgAMCoVrPTXpsAsAqIESEC8gDKalPsKQt5GFMwOdUsiXUKcvUYkZDLoEyD611D77er-qLaT29ae4n1eilvn1rri-r8UM1nlTjp2r0-Pn60TzfraDFvhmUSeePbbS_tbkX7fi93e1utNHzM0I4-M6SELAI-0AxOA4gOVBQTigBeCYZxI7F1ErBqYmZTRQOY4qdYFZZxWkbRb_drByaw0SfFemJKc61KYapGyR6fqp_TjXAHLPhf-uOTKEzQ78Bc4tcxA
ContentType Journal Article
Copyright 2020 一般社団法人 日本内科学会
Copyright_xml – notice: 2020 一般社団法人 日本内科学会
DOI 10.2169/naika.109.2276
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1883-2083
EndPage 2280
ExternalDocumentID article_naika_109_11_109_2276_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
DIK
F5P
JSF
OK1
RJT
ID FETCH-LOGICAL-j2251-cb261076f1301c511851319c79710cb2641dc4d3b8753ad4be906d30c74b9b953
ISSN 0021-5384
IngestDate Wed Sep 03 06:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2251-cb261076f1301c511851319c79710cb2641dc4d3b8753ad4be906d30c74b9b953
OpenAccessLink https://www.jstage.jst.go.jp/article/naika/109/11/109_2276/_article/-char/ja
PageCount 5
ParticipantIDs jstage_primary_article_naika_109_11_109_2276_article_char_ja
PublicationCentury 2000
PublicationDate 2020/11/10
PublicationDateYYYYMMDD 2020-11-10
PublicationDate_xml – month: 11
  year: 2020
  text: 2020/11/10
  day: 10
PublicationDecade 2020
PublicationTitle 日本内科学会雑誌
PublicationTitleAlternate 日内会誌
PublicationYear 2020
Publisher 一般社団法人 日本内科学会
Publisher_xml – name: 一般社団法人 日本内科学会
References 1) Grassly NC, Fraser C: Mathematical models of infectious disease transmission. Nature Reviews Microbiology 6: 477-487, 2008.
4) Endo A, et al: Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 3; peer review: 2 approved]. Wellcome Open Res 5: 67, 2020.
6) Nishiura H, et al: Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). 2020. medRxiv, 2020.02.28.20029272.
2) Anderson RM, May RM: Oxford University Press, New York. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York, 1991.
9) Nishiura H, et al: Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis 93: 284-286, 2020.
3) Imai N, et al: Report 3: Transmissibility of 2019-nCoV. 2020. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-01-25-COVID19-Report-3.pdf (accessed 2020.7.15
5) Hao X, et al: Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584: 420-424, 2020. doi: 10.1038/s41586-020-2554-8.
8) Yan P, Chowell G: Quantitative Methods for Investigating Infectious Disease Outbreaks. Springer, 2019. ISBN 978-3-030-21923-9.
7) Lipsitch M, et al: Transmission dynamics and control of severe acute respiratory syndrome. Science 300: 1966-1970, 2003.
10) Linton NM, et al: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med 9: 538, 2020. doi: 10.3390/jcm9020538.
References_xml – reference: 3) Imai N, et al: Report 3: Transmissibility of 2019-nCoV. 2020. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-01-25-COVID19-Report-3.pdf (accessed 2020.7.15)
– reference: 4) Endo A, et al: Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 3; peer review: 2 approved]. Wellcome Open Res 5: 67, 2020.
– reference: 10) Linton NM, et al: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med 9: 538, 2020. doi: 10.3390/jcm9020538.
– reference: 9) Nishiura H, et al: Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis 93: 284-286, 2020.
– reference: 1) Grassly NC, Fraser C: Mathematical models of infectious disease transmission. Nature Reviews Microbiology 6: 477-487, 2008.
– reference: 2) Anderson RM, May RM: Oxford University Press, New York. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York, 1991.
– reference: 8) Yan P, Chowell G: Quantitative Methods for Investigating Infectious Disease Outbreaks. Springer, 2019. ISBN 978-3-030-21923-9.
– reference: 5) Hao X, et al: Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584: 420-424, 2020. doi: 10.1038/s41586-020-2554-8.
– reference: 6) Nishiura H, et al: Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). 2020. medRxiv, 2020.02.28.20029272.
– reference: 7) Lipsitch M, et al: Transmission dynamics and control of severe acute respiratory syndrome. Science 300: 1966-1970, 2003.
SSID ssib043658134
ssj0066765
ssib002821954
ssib005879745
ssib007485360
ssib058493862
ssib000940260
ssib002484664
Score 2.2641065
Snippet 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策...
SourceID jstage
SourceType Publisher
StartPage 2276
SubjectTerms 基本再生産数
感染症数理モデル
新型コロナウイルス感染症(COVID-19)
Title IV.感染症の数理モデルと対策
URI https://www.jstage.jst.go.jp/article/naika/109/11/109_2276/_article/-char/ja
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本内科学会雑誌, 2020/11/10, Vol.109(11), pp.2276-2280
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-2083
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib007485360
  issn: 0021-5384
  databaseCode: KQ8
  dateStart: 19130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBsIkRxIv4xDc5WAeRidPTPdPd4KVnM0uiRBCSkNuy8zrsYSOyuXgLK-YmgqjHgCdBfHyA-DOLu0d_waqe2d1ZyMFEWHqb7urqqqkeqmqormLsXrcIikClqSd5gA6KUsKjvPsel6qUpii5LslR3HwarW_Lx7vh7tKZpBG1tD9IV7OXx94rOY1UcQzlSrdkTyDZGVIcwD7KF1uUMLb_JOONHUjaELdAJ5BEoCWYNnWwNQISBUYBOvuJQHsRrIMxIcS-m_JBR25KgA3qTg2MI_F0lYYkBIu7JLTKrkFVGnZq0DqcOB66Tgtsi-ARsw4dPG7EHYY1sLidJGqNhcSAid2UBmtBz77V0ozWEMspPk2HgFDFoaPToTL-HF7T5rHjm0CiCh5pQDDb_KiBHqwLrJsdQ0eOplgPRIKbEu1IsnS8hkSgFQ6toMdGwBZ_D07HclM94HlFDVB94SgqjaC1wENXVduZqQzfNN8N3tQAgYoa1gRlGzpOUwU8okSvfbonRim9VufrFrJ_12er4wApXABdNvdH8J3pLN3Q6_TQTTiLowFVMHnyrGFlG0mZ4xpWmV4oKoBeN29mBQy1Ms0iCEqiTTdfLwVarXyeVRBNWCN0NMvaRlHTVeGQ-mlWuVKJ44eL_KLV10MfaBo_6Uy6rYvsQu2LrdiKvUtsqde9zM5t1tEmV9j9jZ0_P9-MXx2Nj95NPh6ODr6N3_-YvH09Gn4aDQ9Hwy-jg8-_v_-afP1wlW23k63WuleXFvF6qMC4l6UB-g0qKtGE4xl52SFHZZQh49ynScnzTOYiJXe-m8u0MH6UCz9TMjWpCcU1ttzf6xfX2Yovc1MqhQ0-00yUXZVGqBhzNOSzTIv8BntUMdl5XuWP6ZxIpjf_b_ktdn7-ft1my4MX-8UdNKMH6V13SP4CXXCV_g
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IV%EF%BC%8E%E6%84%9F%E6%9F%93%E7%97%87%E3%81%AE%E6%95%B0%E7%90%86%E3%83%A2%E3%83%87%E3%83%AB%E3%81%A8%E5%AF%BE%E7%AD%96&rft.jtitle=%E6%97%A5%E6%9C%AC%E5%86%85%E7%A7%91%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E9%88%B4%E6%9C%A8%2C+%E7%B5%A2%E5%AD%90&rft.au=%E8%A5%BF%E6%B5%A6%2C+%E5%8D%9A&rft.date=2020-11-10&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%86%85%E7%A7%91%E5%AD%A6%E4%BC%9A&rft.issn=0021-5384&rft.eissn=1883-2083&rft.volume=109&rft.issue=11&rft.spage=2276&rft.epage=2280&rft_id=info:doi/10.2169%2Fnaika.109.2276&rft.externalDocID=article_naika_109_11_109_2276_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-5384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-5384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-5384&client=summon