IV.感染症の数理モデルと対策
新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策判断の核をなす重要なエビデンスとなる.日本ではこれまで広く取り上げられることが少ない領域であったが,COVID-19の世界的な流行により注目の集まる研究分野である.本稿では,COVID-19の疫学的な知見に加えて,感染症数理モデルの基礎的な考え方について述べる....
Saved in:
| Published in | 日本内科学会雑誌 Vol. 109; no. 11; pp. 2276 - 2280 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Japanese |
| Published |
一般社団法人 日本内科学会
10.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-5384 1883-2083 |
| DOI | 10.2169/naika.109.2276 |
Cover
| Abstract | 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策判断の核をなす重要なエビデンスとなる.日本ではこれまで広く取り上げられることが少ない領域であったが,COVID-19の世界的な流行により注目の集まる研究分野である.本稿では,COVID-19の疫学的な知見に加えて,感染症数理モデルの基礎的な考え方について述べる. |
|---|---|
| AbstractList | 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策判断の核をなす重要なエビデンスとなる.日本ではこれまで広く取り上げられることが少ない領域であったが,COVID-19の世界的な流行により注目の集まる研究分野である.本稿では,COVID-19の疫学的な知見に加えて,感染症数理モデルの基礎的な考え方について述べる. |
| Author | 鈴木, 絢子 西浦, 博 |
| Author_xml | – sequence: 1 fullname: 鈴木, 絢子 organization: 京都大学大学院医学研究科社会健康医学系専攻環境衛生学分野 – sequence: 1 fullname: 西浦, 博 organization: 京都大学大学院医学研究科社会健康医学系専攻環境衛生学分野 |
| BookMark | eNo9jz1Lw0AYgA-pYKxd_Q8OiffeR-5ulOBHoeCirsfdJdXEGiXp4lgqdhNB1LHgJIgfP0D8M8Fk9C9oqzg9wwMPPMuolZ_mCUKrgAMCoVrPTXpsAsAqIESEC8gDKalPsKQt5GFMwOdUsiXUKcvUYkZDLoEyD611D77er-qLaT29ae4n1eilvn1rri-r8UM1nlTjp2r0-Pn60TzfraDFvhmUSeePbbS_tbkX7fi93e1utNHzM0I4-M6SELAI-0AxOA4gOVBQTigBeCYZxI7F1ErBqYmZTRQOY4qdYFZZxWkbRb_drByaw0SfFemJKc61KYapGyR6fqp_TjXAHLPhf-uOTKEzQ78Bc4tcxA |
| ContentType | Journal Article |
| Copyright | 2020 一般社団法人 日本内科学会 |
| Copyright_xml | – notice: 2020 一般社団法人 日本内科学会 |
| DOI | 10.2169/naika.109.2276 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1883-2083 |
| EndPage | 2280 |
| ExternalDocumentID | article_naika_109_11_109_2276_article_char_ja |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS DIK F5P JSF OK1 RJT |
| ID | FETCH-LOGICAL-j2251-cb261076f1301c511851319c79710cb2641dc4d3b8753ad4be906d30c74b9b953 |
| ISSN | 0021-5384 |
| IngestDate | Wed Sep 03 06:31:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j2251-cb261076f1301c511851319c79710cb2641dc4d3b8753ad4be906d30c74b9b953 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/naika/109/11/109_2276/_article/-char/ja |
| PageCount | 5 |
| ParticipantIDs | jstage_primary_article_naika_109_11_109_2276_article_char_ja |
| PublicationCentury | 2000 |
| PublicationDate | 2020/11/10 |
| PublicationDateYYYYMMDD | 2020-11-10 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020/11/10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 日本内科学会雑誌 |
| PublicationTitleAlternate | 日内会誌 |
| PublicationYear | 2020 |
| Publisher | 一般社団法人 日本内科学会 |
| Publisher_xml | – name: 一般社団法人 日本内科学会 |
| References | 1) Grassly NC, Fraser C: Mathematical models of infectious disease transmission. Nature Reviews Microbiology 6: 477-487, 2008. 4) Endo A, et al: Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 3; peer review: 2 approved]. Wellcome Open Res 5: 67, 2020. 6) Nishiura H, et al: Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). 2020. medRxiv, 2020.02.28.20029272. 2) Anderson RM, May RM: Oxford University Press, New York. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York, 1991. 9) Nishiura H, et al: Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis 93: 284-286, 2020. 3) Imai N, et al: Report 3: Transmissibility of 2019-nCoV. 2020. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-01-25-COVID19-Report-3.pdf (accessed 2020.7.15 5) Hao X, et al: Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584: 420-424, 2020. doi: 10.1038/s41586-020-2554-8. 8) Yan P, Chowell G: Quantitative Methods for Investigating Infectious Disease Outbreaks. Springer, 2019. ISBN 978-3-030-21923-9. 7) Lipsitch M, et al: Transmission dynamics and control of severe acute respiratory syndrome. Science 300: 1966-1970, 2003. 10) Linton NM, et al: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med 9: 538, 2020. doi: 10.3390/jcm9020538. |
| References_xml | – reference: 3) Imai N, et al: Report 3: Transmissibility of 2019-nCoV. 2020. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-01-25-COVID19-Report-3.pdf (accessed 2020.7.15) – reference: 4) Endo A, et al: Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 3; peer review: 2 approved]. Wellcome Open Res 5: 67, 2020. – reference: 10) Linton NM, et al: Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med 9: 538, 2020. doi: 10.3390/jcm9020538. – reference: 9) Nishiura H, et al: Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis 93: 284-286, 2020. – reference: 1) Grassly NC, Fraser C: Mathematical models of infectious disease transmission. Nature Reviews Microbiology 6: 477-487, 2008. – reference: 2) Anderson RM, May RM: Oxford University Press, New York. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York, 1991. – reference: 8) Yan P, Chowell G: Quantitative Methods for Investigating Infectious Disease Outbreaks. Springer, 2019. ISBN 978-3-030-21923-9. – reference: 5) Hao X, et al: Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584: 420-424, 2020. doi: 10.1038/s41586-020-2554-8. – reference: 6) Nishiura H, et al: Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). 2020. medRxiv, 2020.02.28.20029272. – reference: 7) Lipsitch M, et al: Transmission dynamics and control of severe acute respiratory syndrome. Science 300: 1966-1970, 2003. |
| SSID | ssib043658134 ssj0066765 ssib002821954 ssib005879745 ssib007485360 ssib058493862 ssib000940260 ssib002484664 |
| Score | 2.2641065 |
| Snippet | 新型コロナウイルス感染症(coronavirus disease 2019:COVID-19)のような新興感染症の流行下においては,感染症数理モデルを用いた流行データ分析やシナリオ分析が政策... |
| SourceID | jstage |
| SourceType | Publisher |
| StartPage | 2276 |
| SubjectTerms | 基本再生産数 感染症数理モデル 新型コロナウイルス感染症(COVID-19) |
| Title | IV.感染症の数理モデルと対策 |
| URI | https://www.jstage.jst.go.jp/article/naika/109/11/109_2276/_article/-char/ja |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 日本内科学会雑誌, 2020/11/10, Vol.109(11), pp.2276-2280 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1883-2083 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib007485360 issn: 0021-5384 databaseCode: KQ8 dateStart: 19130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBsIkRxIv4xDc5WAeRidPTPdPd4KVnM0uiRBCSkNuy8zrsYSOyuXgLK-YmgqjHgCdBfHyA-DOLu0d_waqe2d1ZyMFEWHqb7urqqqkeqmqormLsXrcIikClqSd5gA6KUsKjvPsel6qUpii5LslR3HwarW_Lx7vh7tKZpBG1tD9IV7OXx94rOY1UcQzlSrdkTyDZGVIcwD7KF1uUMLb_JOONHUjaELdAJ5BEoCWYNnWwNQISBUYBOvuJQHsRrIMxIcS-m_JBR25KgA3qTg2MI_F0lYYkBIu7JLTKrkFVGnZq0DqcOB66Tgtsi-ARsw4dPG7EHYY1sLidJGqNhcSAid2UBmtBz77V0ozWEMspPk2HgFDFoaPToTL-HF7T5rHjm0CiCh5pQDDb_KiBHqwLrJsdQ0eOplgPRIKbEu1IsnS8hkSgFQ6toMdGwBZ_D07HclM94HlFDVB94SgqjaC1wENXVduZqQzfNN8N3tQAgYoa1gRlGzpOUwU8okSvfbonRim9VufrFrJ_12er4wApXABdNvdH8J3pLN3Q6_TQTTiLowFVMHnyrGFlG0mZ4xpWmV4oKoBeN29mBQy1Ms0iCEqiTTdfLwVarXyeVRBNWCN0NMvaRlHTVeGQ-mlWuVKJ44eL_KLV10MfaBo_6Uy6rYvsQu2LrdiKvUtsqde9zM5t1tEmV9j9jZ0_P9-MXx2Nj95NPh6ODr6N3_-YvH09Gn4aDQ9Hwy-jg8-_v_-afP1wlW23k63WuleXFvF6qMC4l6UB-g0qKtGE4xl52SFHZZQh49ynScnzTOYiJXe-m8u0MH6UCz9TMjWpCcU1ttzf6xfX2Yovc1MqhQ0-00yUXZVGqBhzNOSzTIv8BntUMdl5XuWP6ZxIpjf_b_ktdn7-ft1my4MX-8UdNKMH6V13SP4CXXCV_g |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IV%EF%BC%8E%E6%84%9F%E6%9F%93%E7%97%87%E3%81%AE%E6%95%B0%E7%90%86%E3%83%A2%E3%83%87%E3%83%AB%E3%81%A8%E5%AF%BE%E7%AD%96&rft.jtitle=%E6%97%A5%E6%9C%AC%E5%86%85%E7%A7%91%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E9%88%B4%E6%9C%A8%2C+%E7%B5%A2%E5%AD%90&rft.au=%E8%A5%BF%E6%B5%A6%2C+%E5%8D%9A&rft.date=2020-11-10&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%86%85%E7%A7%91%E5%AD%A6%E4%BC%9A&rft.issn=0021-5384&rft.eissn=1883-2083&rft.volume=109&rft.issue=11&rft.spage=2276&rft.epage=2280&rft_id=info:doi/10.2169%2Fnaika.109.2276&rft.externalDocID=article_naika_109_11_109_2276_article_char_ja |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-5384&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-5384&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-5384&client=summon |