原子間力顕微鏡法を用いた植物細胞の力学計測

植物構造が司る環境適応性を理解する上で,構成する個々の細胞の力学状態を知ることは本質的な課題である.原子間力顕微鏡法(AFM)は,細胞レベルの力学状態を評価するための有力な手段であり,近年注目されている.本稿では,AFMの基本原理と,その計測から細胞の弾性率を推定する方法について説明する.AFMにより植物細胞の力学状態を経時的に測定するためには,植物の成長を妨げずに,試料を基板に固定しなければならない.この問題解決のためにマイクロデバイスを固定基板として適用した我々の研究例も合わせて紹介する....

Full description

Saved in:
Bibliographic Details
Published inPLANT MORPHOLOGY Vol. 33; no. 1; pp. 41 - 45
Main Authors 岡野, 和宣, 細川, 陽一郎, 秋田, 絵理, 山﨑, 勇輝
Format Journal Article
LanguageJapanese
Published 日本植物形態学会 2021
Subjects
Online AccessGet full text
ISSN0918-9726
1884-4154
DOI10.5685/plmorphol.33.41

Cover

Abstract 植物構造が司る環境適応性を理解する上で,構成する個々の細胞の力学状態を知ることは本質的な課題である.原子間力顕微鏡法(AFM)は,細胞レベルの力学状態を評価するための有力な手段であり,近年注目されている.本稿では,AFMの基本原理と,その計測から細胞の弾性率を推定する方法について説明する.AFMにより植物細胞の力学状態を経時的に測定するためには,植物の成長を妨げずに,試料を基板に固定しなければならない.この問題解決のためにマイクロデバイスを固定基板として適用した我々の研究例も合わせて紹介する.
AbstractList 植物構造が司る環境適応性を理解する上で,構成する個々の細胞の力学状態を知ることは本質的な課題である.原子間力顕微鏡法(AFM)は,細胞レベルの力学状態を評価するための有力な手段であり,近年注目されている.本稿では,AFMの基本原理と,その計測から細胞の弾性率を推定する方法について説明する.AFMにより植物細胞の力学状態を経時的に測定するためには,植物の成長を妨げずに,試料を基板に固定しなければならない.この問題解決のためにマイクロデバイスを固定基板として適用した我々の研究例も合わせて紹介する.
Author 岡野, 和宣
秋田, 絵理
山﨑, 勇輝
細川, 陽一郎
Author_xml – sequence: 1
  fullname: 岡野, 和宣
  organization: 奈良先端科学技術大学院大学 物質創成科学領域
– sequence: 1
  fullname: 細川, 陽一郎
  organization: 奈良先端科学技術大学院大学 物質創成科学領域
– sequence: 1
  fullname: 秋田, 絵理
  organization: 奈良先端科学技術大学院大学 物質創成科学領域
– sequence: 1
  fullname: 山﨑, 勇輝
  organization: 奈良先端科学技術大学院大学 物質創成科学領域
BookMark eNo9UMtKw0AUHaSCsXbtVyTOezIr0eILCm50HcZ0YhvSB0k3LqMuVPCBWjeCpSBSwRZBF678mZCm_QsjPi6cc7nnHM7izoNCs9XUACwiaDFus6V20GiF7VorsAixKJoBBrJtalLEaAEYUCLblALzOVCKIh_mwyERghtgOb3opcOr6d1NenY_7XfTz9H0sj9-6yaH19ntIImPk7g3fjzPTp-z99fJ0UMSj_JkOnyaDE7GHy8LYNZTQaRLv7sIdtfXdsqbZmV7Y6u8UjF9jCk2EcNCEqUoQS7yYBV5LmeYy1yHUGiNBKU5pCeUJIJyQm3MNHP3CK9KSTUpgtWfXj_qqH3ttMN6Q4UHjgo7dTfI778HOIQ46Jso-jfdmgodX5EvMHRu2Q
ContentType Journal Article
Copyright 2021 日本植物形態学会
Copyright_xml – notice: 2021 日本植物形態学会
DOI 10.5685/plmorphol.33.41
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1884-4154
EndPage 45
ExternalDocumentID article_plmorphol_33_1_33_41_article_char_ja
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
KQ8
OK1
RJT
RZJ
ID FETCH-LOGICAL-j2242-152793aa431c1f0d1fc65269152007ee17441749f7a9374634825e5cb36d994e3
ISSN 0918-9726
IngestDate Wed Sep 03 06:30:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2242-152793aa431c1f0d1fc65269152007ee17441749f7a9374634825e5cb36d994e3
OpenAccessLink https://www.jstage.jst.go.jp/article/plmorphol/33/1/33_41/_article/-char/ja
PageCount 5
ParticipantIDs jstage_primary_article_plmorphol_33_1_33_41_article_char_ja
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle PLANT MORPHOLOGY
PublicationTitleAlternate PLANT MORPHOLOGY
PublicationYear 2021
Publisher 日本植物形態学会
Publisher_xml – name: 日本植物形態学会
References Somssich, M., Khan, G. A., and Persson, S. (2016) Cell wall heterogeneity in root development of Arabidopsis. Front Plant Sci 7:1242.
Tamada, K., Hara, M., Sasabe, H., and Knoll, W. (1997) Surface phase behavior of n-alkanethiol self-assembled monolayers adsorbed on Au(111): An atomic force microscope study. Langmuir 13: 1558-1566.
Beauzamy, L., Derr, J., and Boudaoud, A. (2015) Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys J 108: 2448-2456.
Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53: 314-326.
Horade, M., Yanagisawa, N., Mizuta, Y., Higashiyama, T., and Arata, H. (2014) Growth assay of individual pollen tubes arrayed by microchannel device. Microelectron Eng 118: 25- 28.
Park, J., Kurihara, D., Higashiyama, T., and Arata, H. (2014) Fabrication of microcage arrays to fix plant ovules for long-term live imaging and observation. Sens. Actuators B 191:178-185.
Nakajima, K., Liu, H., Ito, M., and Fujinami, S. (2013) Development of quantitative evaluation method for elastic modulus of soft-materials by atomic force microscopy. J Vac Soc Jpn 56: 258-266 (in Japanese).
安藤敏夫 (2019) 高速AFMの現状と将来展望.顕微鏡 54: 56-61.
Akita, E., Yalikun, Y., Okano, K., Yamasaki, Y., Ohtani, M., Tanaka, Y., Demura, T., and Hosokawa, Y. (2020) In situ measurement of cell stiffness of Arabidopsis roots growing on a glass micropillar support by atomic force microscopy. Plant Biotechnol 37: 417-422.
Carter, R., Woolfenden, H., Baillie, A., Amsbury, S., Carroll, S., Healicon, E., Sovatzoglou, S., Braybrook, S., Gray, J. E., Hobbs, J., Morris, R. J., and Fleming, A. J. (2017) Stomatal opening involves polar, not radial, stiffening of guard cells. Curr Biol 27: 2974-2983.
Johnson, K. L., Kendall, K., and Roberts, A. D. (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301-313.
谷口幸範 (2017) 原子間力顕微鏡を利用したナノ力学物性 測定技術.日本ゴム協会誌 90: 577-582.
Dyson, R. J., Vizcay-Barrena, G., Band, L. R., Fernandes, A. N., French, A. P., Fozard, J. A., Hodgman, T. C., Kenobi, K., Pridmore, T. P., Stout, M., et al. (2014) Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytol 202: 1212-1222.
Johnson, K. L., and Greenwood, J. A. (1997) An adhesion map for the contact of elastic spheres. J Colloid Interface Sci 192:326-333.
Fernandes, A. N., Chen, X., Scotchford, C. A., Walker, J., Wells, D.M., Roberts C. J., and Everitt. N. M. (2012) Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: An atomic force microscopy study. Phys Rev E 85: 021916.
Binnig, G., Quate, C. F., and Gerber Ch. (1986) Atomic force microscope. Phys Rev Lett 56: 930-933.
Braybrook, S. A. (2015) Measuring the elasticity of plant cells with atomic force microscopy. Methods Cell Biol 125: 237-254.
Benfey, P. N., Bennett, M., and Schiefelbein, J. (2010) Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant J 61: 992-1000.
Milani, P., Gholamirad, M., Traas, J., Arnéodo, A., Boudaoud, A., Argoul, F., and Hamant. O. (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67: 1116-1123.
Peaucelle, A. (2014) AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. J Vis Exp 89: e51317.
新田英之 (2015) 植物と MEMS−マイクロデバイスで植物 を理解−.植物科学最前線 6:74-81.
References_xml – reference: Akita, E., Yalikun, Y., Okano, K., Yamasaki, Y., Ohtani, M., Tanaka, Y., Demura, T., and Hosokawa, Y. (2020) In situ measurement of cell stiffness of Arabidopsis roots growing on a glass micropillar support by atomic force microscopy. Plant Biotechnol 37: 417-422.
– reference: Nakajima, K., Liu, H., Ito, M., and Fujinami, S. (2013) Development of quantitative evaluation method for elastic modulus of soft-materials by atomic force microscopy. J Vac Soc Jpn 56: 258-266 (in Japanese).
– reference: Binnig, G., Quate, C. F., and Gerber Ch. (1986) Atomic force microscope. Phys Rev Lett 56: 930-933.
– reference: Johnson, K. L., Kendall, K., and Roberts, A. D. (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301-313.
– reference: 新田英之 (2015) 植物と MEMS−マイクロデバイスで植物 を理解−.植物科学最前線 6:74-81.
– reference: Benfey, P. N., Bennett, M., and Schiefelbein, J. (2010) Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research. Plant J 61: 992-1000.
– reference: Somssich, M., Khan, G. A., and Persson, S. (2016) Cell wall heterogeneity in root development of Arabidopsis. Front Plant Sci 7:1242.
– reference: Peaucelle, A. (2014) AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. J Vis Exp 89: e51317.
– reference: 安藤敏夫 (2019) 高速AFMの現状と将来展望.顕微鏡 54: 56-61.
– reference: Park, J., Kurihara, D., Higashiyama, T., and Arata, H. (2014) Fabrication of microcage arrays to fix plant ovules for long-term live imaging and observation. Sens. Actuators B 191:178-185.
– reference: Fernandes, A. N., Chen, X., Scotchford, C. A., Walker, J., Wells, D.M., Roberts C. J., and Everitt. N. M. (2012) Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: An atomic force microscopy study. Phys Rev E 85: 021916.
– reference: 谷口幸範 (2017) 原子間力顕微鏡を利用したナノ力学物性 測定技術.日本ゴム協会誌 90: 577-582.
– reference: Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53: 314-326.
– reference: Beauzamy, L., Derr, J., and Boudaoud, A. (2015) Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys J 108: 2448-2456.
– reference: Dyson, R. J., Vizcay-Barrena, G., Band, L. R., Fernandes, A. N., French, A. P., Fozard, J. A., Hodgman, T. C., Kenobi, K., Pridmore, T. P., Stout, M., et al. (2014) Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytol 202: 1212-1222.
– reference: Horade, M., Yanagisawa, N., Mizuta, Y., Higashiyama, T., and Arata, H. (2014) Growth assay of individual pollen tubes arrayed by microchannel device. Microelectron Eng 118: 25- 28.
– reference: Johnson, K. L., and Greenwood, J. A. (1997) An adhesion map for the contact of elastic spheres. J Colloid Interface Sci 192:326-333.
– reference: Tamada, K., Hara, M., Sasabe, H., and Knoll, W. (1997) Surface phase behavior of n-alkanethiol self-assembled monolayers adsorbed on Au(111): An atomic force microscope study. Langmuir 13: 1558-1566.
– reference: Braybrook, S. A. (2015) Measuring the elasticity of plant cells with atomic force microscopy. Methods Cell Biol 125: 237-254.
– reference: Carter, R., Woolfenden, H., Baillie, A., Amsbury, S., Carroll, S., Healicon, E., Sovatzoglou, S., Braybrook, S., Gray, J. E., Hobbs, J., Morris, R. J., and Fleming, A. J. (2017) Stomatal opening involves polar, not radial, stiffening of guard cells. Curr Biol 27: 2974-2983.
– reference: Milani, P., Gholamirad, M., Traas, J., Arnéodo, A., Boudaoud, A., Argoul, F., and Hamant. O. (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67: 1116-1123.
SSID ssj0000603776
Score 1.8449907
Snippet 植物構造が司る環境適応性を理解する上で,構成する個々の細胞の力学状態を知ることは本質的な課題である.原子間力顕微鏡法(AFM)は,細胞レベルの力学状態を評...
SourceID jstage
SourceType Publisher
StartPage 41
SubjectTerms Arabidopsis thaliana
atomic force microscopy
cell wall
elasticity
mechanobiology
micro device
Title 原子間力顕微鏡法を用いた植物細胞の力学計測
URI https://www.jstage.jst.go.jp/article/plmorphol/33/1/33_41/_article/-char/ja
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX PLANT MORPHOLOGY, 2021, Vol.33(1), pp.41-45
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1884-4154
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603776
  issn: 0918-9726
  databaseCode: KQ8
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-1evAifuI3PTgnybrJfGQGD5LsZimitcoWegtJNjkstVtke9DbqgcV_EBbL4KlIFLBFkEPnvxnlt3t_he-N8l-lR5ahWwY3sy893vvJZk3s5MXw7iWwJDMipSZYcoTk3ElTBVHjhmllKdSJJEK9W6LOTG7wG4v8sWpI2tju5ZWm1EhfrLveyX_4lWggV_xLdlDeHbIFAhQBv_CGTwM5wP5mPicSJ-oChbcMlFF4iuiBFFUV7lEeUhxLaI4UjyfuD5SZAWJviAe1VWUSJsom_gOUYy4UlMsIlleQBGCuBB4lrGNBJ4KCx4jHgiVRAIfP2-MIobSNTBXYBtgK6UWCuXSeFg8f8edq16_e-_B_OQfWxqzraECZgeVhUsCqYBVljR3UImO2g8hQUfQpZy1B6Mo4gF0hrKlNhMglv54Rxf4e7kFgIPuCOw4HkgtEikmgFl4-BXUS1kDYMACgIK2XgnEjy-q2KPlFDSCAolcF0pgjf3MyxGya2OV1IxHxmSavTu-0GrBkOLYecLvbJiRkpkQOrHxcShLCDJxv2WDSpYZLA9PsuSbewc-LiTmCFlZetiA27OxVKC0MOg2kU08v1aDYcuA0sDCE7OCQSW-8BfUYdZx1MZVLtzqcF8OVy6Lokgd_dXGoWpZziwEcWMPBAjs6jDNGWyR1FFb9aRxIp9uzbiZyFPGVD08bRzzGjAlenzGuNV5s9HZftf_-KHz6lN_c73zZ6f_drP7c7399H1vbavdet5ubXS_vO69_Nb79WP32ed2awdadra_7m696P7-ftZYqPjV0qyZf1HErEOoapv4DWdFwxCi5thKizUrjQW3hbIw-ZiTJDA9Z_BTqRNC2M4EZn7iCY8jKmpKsYSeM6aXG8vJeWNGpJGMUkeGiWTMieC5ppiocSe2FEzhRe2CcTNTPFjJ0sYEhzH9xf_qfck4jhd1tlJ42ZhuPlpNrkDs3Iyualf-Bf5YpjU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8E%9F%E5%AD%90%E9%96%93%E5%8A%9B%E9%A1%95%E5%BE%AE%E9%8F%A1%E6%B3%95%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E6%A4%8D%E7%89%A9%E7%B4%B0%E8%83%9E%E3%81%AE%E5%8A%9B%E5%AD%A6%E8%A8%88%E6%B8%AC&rft.jtitle=PLANT+MORPHOLOGY&rft.au=%E5%B2%A1%E9%87%8E%2C+%E5%92%8C%E5%AE%A3&rft.au=%E7%B4%B0%E5%B7%9D%2C+%E9%99%BD%E4%B8%80%E9%83%8E&rft.au=%E7%A7%8B%E7%94%B0%2C+%E7%B5%B5%E7%90%86&rft.au=%E5%B1%B1%EF%A8%91%2C+%E5%8B%87%E8%BC%9D&rft.date=2021&rft.pub=%E6%97%A5%E6%9C%AC%E6%A4%8D%E7%89%A9%E5%BD%A2%E6%85%8B%E5%AD%A6%E4%BC%9A&rft.issn=0918-9726&rft.eissn=1884-4154&rft.volume=33&rft.issue=1&rft.spage=41&rft.epage=45&rft_id=info:doi/10.5685%2Fplmorphol.33.41&rft.externalDocID=article_plmorphol_33_1_33_41_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-9726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-9726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-9726&client=summon