半月板を介在して荷重を担う軟骨の組織学的,力学的特性 ブタ膝関節を用いた実験研究
【目的】ブタ脛骨軟骨における半月板に被覆された軟骨(被覆部軟骨)は被覆されていない軟骨(非被覆部軟骨)と比較して力学的特性や表層コラーゲン線維を中心とした組織学的所見が異なるのかを検証する。【方法】豚膝関節の内外側関節面における被覆部軟骨,非被覆部軟骨から骨軟骨プラグを採取した。各領域から得たプラグに対して力学的特性の評価としてインデンテーション試験を,組織学的評価としてサフラニンO染色を,コラーゲン線維構造の評価として走査型電子顕微鏡による観察を行った。【結果】被覆部軟骨は圧縮負荷に対する変形量が非被覆部軟骨よりも大きかった。組織学的に被覆部軟骨のサフラニンO染色性は低く,表層コラーゲン線維...
Saved in:
| Published in | 理学療法学 Vol. 40; no. 5; pp. 355 - 363 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | Japanese |
| Published |
日本理学療法士学会
20.08.2013
日本理学療法士協会 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0289-3770 2189-602X |
| DOI | 10.15063/rigaku.KJ00008826560 |
Cover
| Abstract | 【目的】ブタ脛骨軟骨における半月板に被覆された軟骨(被覆部軟骨)は被覆されていない軟骨(非被覆部軟骨)と比較して力学的特性や表層コラーゲン線維を中心とした組織学的所見が異なるのかを検証する。【方法】豚膝関節の内外側関節面における被覆部軟骨,非被覆部軟骨から骨軟骨プラグを採取した。各領域から得たプラグに対して力学的特性の評価としてインデンテーション試験を,組織学的評価としてサフラニンO染色を,コラーゲン線維構造の評価として走査型電子顕微鏡による観察を行った。【結果】被覆部軟骨は圧縮負荷に対する変形量が非被覆部軟骨よりも大きかった。組織学的に被覆部軟骨のサフラニンO染色性は低く,表層コラーゲン線維の密度が低かった。【結論】日常的に半月板を介在して荷重を受けていた被覆部軟骨は軟骨基質成分に乏しく,半月板損傷,半月板切除後に被覆部軟骨が直接荷重を強いられると局所的に大きな変形を生じる可能性がある。 |
|---|---|
| AbstractList | 【目的】ブタ脛骨軟骨における半月板に被覆された軟骨(被覆部軟骨)は被覆されていない軟骨(非被覆部軟骨)と比較して力学的特性や表層コラーゲン線維を中心とした組織学的所見が異なるのかを検証する。【方法】豚膝関節の内外側関節面における被覆部軟骨,非被覆部軟骨から骨軟骨プラグを採取した。各領域から得たプラグに対して力学的特性の評価としてインデンテーション試験を,組織学的評価としてサフラニンO染色を,コラーゲン線維構造の評価として走査型電子顕微鏡による観察を行った。【結果】被覆部軟骨は圧縮負荷に対する変形量が非被覆部軟骨よりも大きかった。組織学的に被覆部軟骨のサフラニンO染色性は低く,表層コラーゲン線維の密度が低かった。【結論】日常的に半月板を介在して荷重を受けていた被覆部軟骨は軟骨基質成分に乏しく,半月板損傷,半月板切除後に被覆部軟骨が直接荷重を強いられると局所的に大きな変形を生じる可能性がある。 「要旨」【目的】ブタ脛骨軟骨における半月板に被覆された軟骨(被覆部軟骨)は被覆されていない軟骨(非被覆部軟骨)と比較して力学的特性や表層コラーゲン線維を中心とした組織学的所見が異なるのかを検証する. 【方法】豚膝関節の内外側関節面における被覆部軟骨, 非被覆部軟骨から骨軟骨プラグを採取した. 各領域から得たプラグに対して力学的特性の評価としてインデンテーション試験を, 組織学的評価としてサフラニンO染色を, コラーゲン線維構造の評価として走査型電子顕微鏡による観察を行った. 【結果】被覆部軟骨は圧縮負荷に対する変形量が非被覆部軟骨よりも大きかった. 組織学的に被覆部軟骨のサフラニンO染色性は低く, 表層コラーゲン線維の密度が低かった. 【結論】日常的に半月板を介在して荷重を受けていた被覆部軟骨は軟骨基質成分に乏しく, 半月板損傷, 半月板切除後に被覆部軟骨が直接荷重を強いられると局所的に大きな変形を生じる可能性がある. |
| Author | 伊藤, 明良 秋山, 治彦 飯島, 弘貴 山口, 将希 黒木, 裕士 太治野, 純一 長井, 桃子 青山, 朋樹 張, 項凱 |
| Author_xml | – sequence: 1 fullname: 伊藤, 明良 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 黒木, 裕士 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 秋山, 治彦 organization: 京都大学大学院医学研究科整形外科 – sequence: 1 fullname: 張, 項凱 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 太治野, 純一 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 山口, 将希 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 長井, 桃子 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 飯島, 弘貴 organization: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – sequence: 1 fullname: 青山, 朋樹 organization: 京都大学大学院医学系研究科人間健康科学系専攻運動機能開発学 |
| BookMark | eNpVUF1LAkEUHaIgs35C_yDr7szuzO5jSFkm9FLQ2zA7O-marrJrD75l2JfiSwRBGb1VBPUWIT70Y8yvf9GIEXQf7jncezgHzgKaDUqBQmjZgFXDAkrWQj8rjo5Xd9Kgx7YxtSjMoBg2bCdBAR_MohhgzQljMI-Wosh3J0KGDcxiKNNvNQbty8HDV-_0-rvb7LdferXbXu1p1PocX7T0cdA869XOR93H8at-vQ8_6sPOTf_taXhXX-k37qdseNUZnDwvorlDUYjU0i_G0f7mxl5yK5HZTW0n1zOJ_CQ04XkAjgOmBtdmHqYAWDouk9JVjJrSFJ7reraiWAjHdUylJCOKYSlsxZQHJI5SU9-i8nwpCqWg4AeK50vHYaBzuXRJOVeNfI7BIBzABLA0YA7E0oRQgsGhBjDtlJ465aOKyCpeDv2iCKtchBVfFhSflstN4NZk_Sv5TyRzIuR5QX4ALxKRrA |
| ContentType | Journal Article |
| Copyright | 2013 公益社団法人 日本理学療法士協会 |
| Copyright_xml | – notice: 2013 公益社団法人 日本理学療法士協会 |
| CorporateAuthor | 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 京都大学大学院医学研究科人間健康科学系専攻運動機能開発学 京都大学大学院医学研究科整形外科 |
| CorporateAuthor_xml | – name: 京都大学大学院医学研究科人間健康科学系専攻運動機能解析学 – name: 京都大学大学院医学研究科整形外科 – name: 京都大学大学院医学研究科人間健康科学系専攻運動機能開発学 |
| DOI | 10.15063/rigaku.KJ00008826560 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2189-602X |
| EndPage | 363 |
| ExternalDocumentID | cb3physi_2013_004005_002_0355_03632096107 article_rigaku_40_5_40_KJ00008826560_article_char_ja |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF RJT |
| ID | FETCH-LOGICAL-j2127-dd009904d00b87d26002c9b7ccbe764c4adbbd8e62aa9b94eec73e72ca8e7ed03 |
| ISSN | 0289-3770 |
| IngestDate | Thu Jul 10 16:20:19 EDT 2025 Wed Sep 03 06:30:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 5 |
| Language | Japanese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-j2127-dd009904d00b87d26002c9b7ccbe764c4adbbd8e62aa9b94eec73e72ca8e7ed03 |
| OpenAccessLink | https://www.jstage.jst.go.jp/article/rigaku/40/5/40_KJ00008826560/_article/-char/ja |
| PageCount | 9 |
| ParticipantIDs | medicalonline_journals_cb3physi_2013_004005_002_0355_03632096107 jstage_primary_article_rigaku_40_5_40_KJ00008826560_article_char_ja |
| PublicationCentury | 2000 |
| PublicationDate | 20130820 |
| PublicationDateYYYYMMDD | 2013-08-20 |
| PublicationDate_xml | – month: 08 year: 2013 text: 20130820 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | 理学療法学 |
| PublicationTitleAlternate | 理学療法学 |
| PublicationYear | 2013 |
| Publisher | 日本理学療法士学会 日本理学療法士協会 |
| Publisher_xml | – name: 日本理学療法士学会 – name: 日本理学療法士協会 |
| References | 66) CICCOTTI MC. The prevalence of articular cartilage changes in the knee joint in patients undergoing arthroscopy for meniscal pathology. Arthroscopy. (2012) vol.28, p.1437-1444. 39) DENEWETH JM. Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res. (2013) vol.31, p.370-375. 47) THAMBYAH A. Impact induced failure of cartilage-on-bone following creep loading:a microstructural and fracture mechanics study. J Mech Behav Biomed Mater. (2012) vol.14, p.239-247. 37) JULKUNEN P. Contribution of tissue composition and structure to mechanical response of articular cartilage under defferent loading geometries and strain rates. Biomech Model Mechanobiol. (2010) vol.9, p.237-245. 16) BRAHME SK. Osteonecrosis of the knee after arthrooscopic surgery:diagnosis with MR imaging. Radiology. (1991) vol.178, p.851-853. 25) LI G. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech. (2005) vol.20, p.736-744. 19) STURNIEKS DL. Knee joint biomechanics following arthroscopic partial meniscectomy. J Orthop Res. (2008) vol.26, p.1075-1080. 43) YOUNG AA. Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther. (2006) vol.8, p.R41. 46) HOUPT J. Spontaneous osteonecrosis of the medial plateau. J Rheumatol. (1982) vol.9, p.81-91. 63) NAGURA T. Mechanical loads at the knee joint during deep flextion. J Orthop Res. (2002) vol.20, p.881-886. 38) APPLEYARD RC. Topographical analysis of the structural,biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. (2003) vol.11, p.65-67. 44) LITTLE CB. Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis:an experimental study in sheep. J Orthop Res. (1996) vol.14, p.433-444. 12) LEE SJ. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med. (2006) vol.34, p.1334-1344. 4) ENGLUND M. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among-aged and elderly persons:the multicenter osteoarthritis study.. Arthritis Rheum. (2009) vol.60, p.831-839. 40) BEVILL SL. Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthritis Cartilage. (2009) vol.17, p.980-987. 49) KAAB MJ. The acute structural changes of loaded articular cartilage following meniscectomy or ACL-transection. Osteoarthritis Cartilage. (2000) vol.8, p.464-473. 13) SEITZ AM. Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees. J Orthop Res. (2012) vol.30, p.934-942. 11) BARATZ ME. Meniscal tear:the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee.A preliminary report. Am J Sports Med. (1986) vol.14, p.270-275. 23) ADOUNI M. Computational biodynamics of human knee joint in gait:From muscle forces to cartilage stresses. J Biomech. (2012) vol.45, p.2149-2156. 41) CAO L. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J Biomech Eng. (2006) vol.128, p.766-771. 56) YAMAGUCHI S. Effects of exercise level on biomarkers in a rat knee model of osteoarthritis. J Orthop Res. (2013 18) ROOS EM. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage:a four month,randomised,controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. (2005) vol.52, p.3507-3514. 35) KLEEMANN RU. Altered cartilage mechanics and histology in knee osteoarthritis:relation to clinical assessment(ICRS grade). Osteoarthritis Cartilage. (2005) vol.13, p.958-963. 52) ENGLUND M. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. (2004) vol.50, p.2811-2819. 45) SONG Y. Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjects to cyclic loads. Osteoarthritis Cartilage. (2008) vol.16, p.1545-1554. 6) NAKAMURA N. Subchondral microfracture of the knee without osteonecrosis after arthroscopic medial meniscectomy. Arthroscopy. (2002) vol.18, p.538-541. 22) KUROKI H. Ultrasound properties of articular cartilage in the tibio-femoral joint in knee ostethritis:relation to clinical assessment(International Carmage Repair Society grade. Arthritis Res Ther. (2008) vol.10, p.R78. 17) ERICSSON YB. Effects of functional exercise training on performance and muscle strength after meniscectomy:a randomized trial. Scand J Med Sports. (2009) vol.19, p.156-165. 32) VANWANSEELE B. The effects of immobilization on the characteristics of articular cartilage:current concepts and future directions. Osteoarthritis Cartilage. (2002) vol.10, p.408-419. 20) ANETZBERGER H. Meniscectomy leads to early changes in the mineralization distribution of subchondral bone plate. Knee surg Sports Traumatol Arthrosc. (2012 31) SASAZAKI Y. Deformation and failure of cartilage in the tensile mode. J Anat. (2006) vol.208, p.681-694. 9) TURKER M. Postarthroscopy osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. (2013 7) SATKU K. The natural history of spontaneous osteonecrosis of the medial tibial plateau. J Bone Joint Surg Br. (2003) vol.85, p.983-988. 48) KIM W. Does prior sustained compression make cartilage-on-bone more vulnerable to trauma?. Clin Biomech. (2012) vol.27, p.637-645. 57) THORLUND JB. Muscle strength and functional performance in patients at high risk of knee osteoarthritis:a follow-up study. Knee Surg Sports Traumatol Arthrosc. (2012) vol.20, p.1110-1117. 3) CHOI YR. The association between meniscal subluxation and cartilage degeneration. Eur J Orthop Sug Traumatol. (2012 33) JULKNEN P. Characterization of articular cartilage by combining microscopic analysis with a fibri-reinforced finite-element model. J Biomech. (2007) vol.40, p.1862-1870. 14) BEVERIDGE JE. Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model. J Orthop Res. (2011) vol.29, p.1397-1405. 42) HYLLESTED JL. Histochemical studies of the extracellular matrix of human articular cartilage-areview. Osteoarthritis Cartilage. (2002) vol.10, p.333-343. 2) MURAKI S. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts:the ROAD study. Osteoarthritis Cartilage. (2009) vol.17, p.1137-1143. 28) KAZEMI M. Partial meniscectomy changes fluid pressurization in articular cartilage in human knees. J Biomech Eng. (2012 62) THAMBYAH A. Contact stresses in the knee joint in deep flextion. Med Eng Phys. (2005) vol.27, p.329-335. 64) SMITH SM. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait Posture. (2008) vol.27, p.376-386. 58) THORLUND JB. Neuromuscular function during a forward lunge in meniscectomized patients. Med Sci Sports Exerc. (2012) vol.44, p.1358-1365. 55) ITO A. Low-intensity pulsed ultra-sound inhibits messenger RNA expression of matrix peralloproteinase-13 induced by interleukin-1β in chondrocytes in an intensity-dependent manner. Ultrasound Med Biol. (2012) vol.38, p.1726-1733. 29) TORZILLI PA. Movement of interstitial water through loaded articular cartilage. J Biomech. (1983) vol.16, p.169-179. 50) ROOS EM. Long-term outcome of meniscectomy:symptoms,function,and performance tests in patients with or without radiographic osteoarthritis compared to matched controls. Osteoarthritis Cartilage. (2001) vol.9, p.316-324. 1) LOESER RF. Osteoarthritis:a disease of the joint as an organ. Arthritis Rheum. (2012) vol.64, p.1697-1707. 36) HOSSEINI SM. Is collagen fiber damage the cause of early softening in articular cartilage?. Osteoarthritis Cartilage. (2013) vol.21, p.136-143. 10) MACCDESSI SJ. Subchondral fracture following arthroscopic knee surgery. J Bone Joint Surg Am. (2008) vol.90, p.1007-1012. 54) CHATAIN F. A comparative study of medial versus lateral arthroscopic partial meniscectomy on stable knees:10-year minimum follow up. Arthroscopy. (2003) vol.19, p.842-849. 34) KORHONEN RK. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal,proteoglycan depleted and collagen degraded articular cartilage. J Biomech. (2003) vol.36, p.1373-1379. 51) KURAISHI J. Arthroscopic lateral meniscectomy in knees with lateral compartment osteoarthritis:a case series study. Arthroscopy. (2006) vol.22, p.878-883. 60) THORLUND JB. Neuromuscular function during stair descent in meniscectomized patient and controls. Med Sci Sports Exerc. (2011) vol.43, p.1272-1279. 15) ATMACA H. Changes in the loading of tibial articular cartilage following medial meniscectomy:a finite element analysis study. Knee Surg Sports Traumatol Arthrosc. (2012 53) SALATA MJ. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med. (2010) vol.38, p.1907-1916. 65) HORISBERGER M. The influence of cyclic concentric and eccentric submaximal muscle loading on cell viability in the rabbit knee joint. Clin Biomech. (2012) vol.27, p.292-298. 24) THAMBYAH A. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthritis Cartilage. (2006) vol.14, p.580-588. 30) GANNON AR. The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage. (2012) vol.20, p.1417-1425. 59) BECKER R. Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J Orthop Res. (2004) vol.22, p.768-773. 26) JONES RS. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech. (1996) vol.1 |
| References_xml | – reference: 58) THORLUND JB. Neuromuscular function during a forward lunge in meniscectomized patients. Med Sci Sports Exerc. (2012) vol.44, p.1358-1365. – reference: 8) THEODOROU SJ. Osteonecrosis of the tibial plateau:magnetic resonance imaging appearances with quantitation of lesion size and evidence of a pathogenesis of meniscal injury. J Comput Assist Tomogr. (2010) vol.34, p.149-155. – reference: 36) HOSSEINI SM. Is collagen fiber damage the cause of early softening in articular cartilage?. Osteoarthritis Cartilage. (2013) vol.21, p.136-143. – reference: 29) TORZILLI PA. Movement of interstitial water through loaded articular cartilage. J Biomech. (1983) vol.16, p.169-179. – reference: 32) VANWANSEELE B. The effects of immobilization on the characteristics of articular cartilage:current concepts and future directions. Osteoarthritis Cartilage. (2002) vol.10, p.408-419. – reference: 38) APPLEYARD RC. Topographical analysis of the structural,biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. (2003) vol.11, p.65-67. – reference: 39) DENEWETH JM. Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res. (2013) vol.31, p.370-375. – reference: 24) THAMBYAH A. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthritis Cartilage. (2006) vol.14, p.580-588. – reference: 56) YAMAGUCHI S. Effects of exercise level on biomarkers in a rat knee model of osteoarthritis. J Orthop Res. (2013) – reference: 57) THORLUND JB. Muscle strength and functional performance in patients at high risk of knee osteoarthritis:a follow-up study. Knee Surg Sports Traumatol Arthrosc. (2012) vol.20, p.1110-1117. – reference: 62) THAMBYAH A. Contact stresses in the knee joint in deep flextion. Med Eng Phys. (2005) vol.27, p.329-335. – reference: 17) ERICSSON YB. Effects of functional exercise training on performance and muscle strength after meniscectomy:a randomized trial. Scand J Med Sports. (2009) vol.19, p.156-165. – reference: 33) JULKNEN P. Characterization of articular cartilage by combining microscopic analysis with a fibri-reinforced finite-element model. J Biomech. (2007) vol.40, p.1862-1870. – reference: 15) ATMACA H. Changes in the loading of tibial articular cartilage following medial meniscectomy:a finite element analysis study. Knee Surg Sports Traumatol Arthrosc. (2012) – reference: 16) BRAHME SK. Osteonecrosis of the knee after arthrooscopic surgery:diagnosis with MR imaging. Radiology. (1991) vol.178, p.851-853. – reference: 50) ROOS EM. Long-term outcome of meniscectomy:symptoms,function,and performance tests in patients with or without radiographic osteoarthritis compared to matched controls. Osteoarthritis Cartilage. (2001) vol.9, p.316-324. – reference: 18) ROOS EM. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage:a four month,randomised,controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. (2005) vol.52, p.3507-3514. – reference: 63) NAGURA T. Mechanical loads at the knee joint during deep flextion. J Orthop Res. (2002) vol.20, p.881-886. – reference: 43) YOUNG AA. Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther. (2006) vol.8, p.R41. – reference: 10) MACCDESSI SJ. Subchondral fracture following arthroscopic knee surgery. J Bone Joint Surg Am. (2008) vol.90, p.1007-1012. – reference: 1) LOESER RF. Osteoarthritis:a disease of the joint as an organ. Arthritis Rheum. (2012) vol.64, p.1697-1707. – reference: 14) BEVERIDGE JE. Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model. J Orthop Res. (2011) vol.29, p.1397-1405. – reference: 48) KIM W. Does prior sustained compression make cartilage-on-bone more vulnerable to trauma?. Clin Biomech. (2012) vol.27, p.637-645. – reference: 55) ITO A. Low-intensity pulsed ultra-sound inhibits messenger RNA expression of matrix peralloproteinase-13 induced by interleukin-1β in chondrocytes in an intensity-dependent manner. Ultrasound Med Biol. (2012) vol.38, p.1726-1733. – reference: 64) SMITH SM. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait Posture. (2008) vol.27, p.376-386. – reference: 19) STURNIEKS DL. Knee joint biomechanics following arthroscopic partial meniscectomy. J Orthop Res. (2008) vol.26, p.1075-1080. – reference: 35) KLEEMANN RU. Altered cartilage mechanics and histology in knee osteoarthritis:relation to clinical assessment(ICRS grade). Osteoarthritis Cartilage. (2005) vol.13, p.958-963. – reference: 44) LITTLE CB. Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis:an experimental study in sheep. J Orthop Res. (1996) vol.14, p.433-444. – reference: 9) TURKER M. Postarthroscopy osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. (2013) – reference: 3) CHOI YR. The association between meniscal subluxation and cartilage degeneration. Eur J Orthop Sug Traumatol. (2012) – reference: 49) KAAB MJ. The acute structural changes of loaded articular cartilage following meniscectomy or ACL-transection. Osteoarthritis Cartilage. (2000) vol.8, p.464-473. – reference: 31) SASAZAKI Y. Deformation and failure of cartilage in the tensile mode. J Anat. (2006) vol.208, p.681-694. – reference: 65) HORISBERGER M. The influence of cyclic concentric and eccentric submaximal muscle loading on cell viability in the rabbit knee joint. Clin Biomech. (2012) vol.27, p.292-298. – reference: 42) HYLLESTED JL. Histochemical studies of the extracellular matrix of human articular cartilage-areview. Osteoarthritis Cartilage. (2002) vol.10, p.333-343. – reference: 45) SONG Y. Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjects to cyclic loads. Osteoarthritis Cartilage. (2008) vol.16, p.1545-1554. – reference: 59) BECKER R. Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J Orthop Res. (2004) vol.22, p.768-773. – reference: 53) SALATA MJ. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med. (2010) vol.38, p.1907-1916. – reference: 11) BARATZ ME. Meniscal tear:the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee.A preliminary report. Am J Sports Med. (1986) vol.14, p.270-275. – reference: 21) WIRTH W. Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthritis Cartilage. (2009) vol.17, p.291-297. – reference: 47) THAMBYAH A. Impact induced failure of cartilage-on-bone following creep loading:a microstructural and fracture mechanics study. J Mech Behav Biomed Mater. (2012) vol.14, p.239-247. – reference: 28) KAZEMI M. Partial meniscectomy changes fluid pressurization in articular cartilage in human knees. J Biomech Eng. (2012) – reference: 34) KORHONEN RK. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal,proteoglycan depleted and collagen degraded articular cartilage. J Biomech. (2003) vol.36, p.1373-1379. – reference: 25) LI G. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech. (2005) vol.20, p.736-744. – reference: 40) BEVILL SL. Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthritis Cartilage. (2009) vol.17, p.980-987. – reference: 66) CICCOTTI MC. The prevalence of articular cartilage changes in the knee joint in patients undergoing arthroscopy for meniscal pathology. Arthroscopy. (2012) vol.28, p.1437-1444. – reference: 26) JONES RS. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech. (1996) vol.11, p.295-300. – reference: 60) THORLUND JB. Neuromuscular function during stair descent in meniscectomized patient and controls. Med Sci Sports Exerc. (2011) vol.43, p.1272-1279. – reference: 13) SEITZ AM. Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees. J Orthop Res. (2012) vol.30, p.934-942. – reference: 51) KURAISHI J. Arthroscopic lateral meniscectomy in knees with lateral compartment osteoarthritis:a case series study. Arthroscopy. (2006) vol.22, p.878-883. – reference: 6) NAKAMURA N. Subchondral microfracture of the knee without osteonecrosis after arthroscopic medial meniscectomy. Arthroscopy. (2002) vol.18, p.538-541. – reference: 46) HOUPT J. Spontaneous osteonecrosis of the medial plateau. J Rheumatol. (1982) vol.9, p.81-91. – reference: 22) KUROKI H. Ultrasound properties of articular cartilage in the tibio-femoral joint in knee ostethritis:relation to clinical assessment(International Carmage Repair Society grade. Arthritis Res Ther. (2008) vol.10, p.R78. – reference: 4) ENGLUND M. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among-aged and elderly persons:the multicenter osteoarthritis study.. Arthritis Rheum. (2009) vol.60, p.831-839. – reference: 12) LEE SJ. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med. (2006) vol.34, p.1334-1344. – reference: 54) CHATAIN F. A comparative study of medial versus lateral arthroscopic partial meniscectomy on stable knees:10-year minimum follow up. Arthroscopy. (2003) vol.19, p.842-849. – reference: 61) YAO J. Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flextion. J Orthop Res. (2008) vol.26, p.673-684. – reference: 37) JULKUNEN P. Contribution of tissue composition and structure to mechanical response of articular cartilage under defferent loading geometries and strain rates. Biomech Model Mechanobiol. (2010) vol.9, p.237-245. – reference: 20) ANETZBERGER H. Meniscectomy leads to early changes in the mineralization distribution of subchondral bone plate. Knee surg Sports Traumatol Arthrosc. (2012) – reference: 23) ADOUNI M. Computational biodynamics of human knee joint in gait:From muscle forces to cartilage stresses. J Biomech. (2012) vol.45, p.2149-2156. – reference: 52) ENGLUND M. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. (2004) vol.50, p.2811-2819. – reference: 5) JOHNSON TC. Osteonecrosis of the knee after arthroscopic surgery for meniscal tears and chondral lesions. Arthroscopy. (2000) vol.16, p.254-261. – reference: 30) GANNON AR. The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage. (2012) vol.20, p.1417-1425. – reference: 7) SATKU K. The natural history of spontaneous osteonecrosis of the medial tibial plateau. J Bone Joint Surg Br. (2003) vol.85, p.983-988. – reference: 41) CAO L. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J Biomech Eng. (2006) vol.128, p.766-771. – reference: 2) MURAKI S. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population-based cohorts:the ROAD study. Osteoarthritis Cartilage. (2009) vol.17, p.1137-1143. – reference: 27) ARNO S. The effect of arthroscopic partial medial meniscectomy on tibiofemoral stability. Am J Sports Med. (2013) vol.41, p.73-79. |
| SSID | ssib000872127 ssib022575314 ssib044219340 ssib001527063 ssib005902260 ssj0003304640 ssib003110431 ssib044759789 ssib023161324 |
| Score | 1.6017697 |
| Snippet | 【目的】ブタ脛骨軟骨における半月板に被覆された軟骨(被覆部軟骨)は被覆されていない軟骨(非被覆部軟骨)と比較して力学的特性や表層コラーゲン線維を中心とした組織学的所... 「要旨」【目的】ブタ脛骨軟骨における半月板に被覆された軟骨(被覆部軟骨)は被覆されていない軟骨(非被覆部軟骨)と比較して力学的特性や表層コラーゲン線維を中心とした組織... |
| SourceID | medicalonline jstage |
| SourceType | Publisher |
| StartPage | 355 |
| SubjectTerms | 半月板被覆部軟骨 表層コラーゲン線維 非被覆部軟骨 |
| Subtitle | ブタ膝関節を用いた実験研究 |
| Title | 半月板を介在して荷重を担う軟骨の組織学的,力学的特性 |
| URI | https://www.jstage.jst.go.jp/article/rigaku/40/5/40_KJ00008826560/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=cb3physi/2013/004005/002&name=0355-0363j |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 理学療法学, 2013/08/20, Vol.40(5), pp.355-363 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2189-602X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044759789 issn: 0289-3770 databaseCode: M~E dateStart: 19840101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFB9qvQgiior1ix7MSbdmM8kkuZnZzlKq9dRCb8N8VVyxSm0vHsRK_WrpRQRBK96qCHoTKT34x6y72_4XvpeZ3ZliD7UIZRqSl-Tll2Tee9nMe45zJUo1vPfjqKbm6mCgsEzXNKNztZTyNNVyTuUe-KZuexMzfHJWzA4d6VRuLS0txmPJ432_KznMrEIezCt-JfsPMztoFDIgDfMLT5hheB5ojkkgiBonypDAI7pBlLKJceI3SeASxYhmJODE94nykRhojLJFdaJlkTAeCRS240OOJkpiuqzuYV0lCmJliaFB3URiY8oGTUACSXxgiduEJppjp2bcdiGJNljEGpZtQ7S_TykklMa62C8lRla1Z0tGLQ_VihpZBXrfJVoMivpLyQLQsCApHLRBFq5aoGDUgR07DKRZ0ms7PlaACuOz9IqYQfsuMX5JD23KAmC_jn9F-z7DhjB3Lz8C-QGcLBl0TS28ApH369VjGAyJgWtxsHEsS9Cd6PPWODAkyHKFxmKiTUUOgE0MciCPrzKW2TxQzHTNozYS_UCQ5X6vig0rKlLJzT0hFwqOm0uUv2SnAG0VVvzC3TvRvaWxm5PWnADrU3i0VBYGVziLRR_m5CGnocDHnmphnwi_IAxbYMYcZSB8McLK1JOgooVKjDNQ0eKZpBWvcC6oqFUXUOhxiJVWPUgksLnLywBgsYCOWgYh4Bykslu6NLIuLvtBFlBhwyM9j-ensQXUxbd-CMn1_QABfbUF1hu65Th-P_9FNfdsU1FOp086JwqrctTkQJxyhlrRaedWZ321u_Gq-_FX-9mb39trnY0v7eV37eXNnfWfuy_XIbO79ry9_GJn-9PuVyj63vux0tt62_m22Xu_cq2z-iFP9V5vdZ9-PuPMNIPpxkStCJ5SayGYtTRF4w_euJTGSqYYh4IlOpZJEmfS4wmP0jhOVeaxKNKx5lmWSDeTLIlUJrOUumed4fkH89k5Z1TUE50Iz5Upl5xmSideEqVJLLQrYs_lI04jByN8mHvICQ-zOEacG3uQDIsX7aMwiV17zBvivgut2iHgHwspLOwQb6IwDFxF5fn_wsgF51i5wS86w4sLS9klsDwW48t23f4Br8r1vA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8D%8A%E6%9C%88%E6%9D%BF%E3%82%92%E4%BB%8B%E5%9C%A8%E3%81%97%E3%81%A6%E8%8D%B7%E9%87%8D%E3%82%92%E6%8B%85%E3%81%86%E8%BB%9F%E9%AA%A8%E3%81%AE%E7%B5%84%E7%B9%94%E5%AD%A6%E7%9A%84%2C%E5%8A%9B%E5%AD%A6%E7%9A%84%E7%89%B9%E6%80%A7&rft.jtitle=%E7%90%86%E5%AD%A6%E7%99%82%E6%B3%95%E5%AD%A6&rft.au=%E4%BC%8A%E8%97%A4%2C+%E6%98%8E%E8%89%AF&rft.au=%E9%BB%92%E6%9C%A8%2C+%E8%A3%95%E5%A3%AB&rft.au=%E7%A7%8B%E5%B1%B1%2C+%E6%B2%BB%E5%BD%A6&rft.au=%E5%BC%B5%2C+%E9%A0%85%E5%87%B1&rft.date=2013-08-20&rft.pub=%E6%97%A5%E6%9C%AC%E7%90%86%E5%AD%A6%E7%99%82%E6%B3%95%E5%A3%AB%E5%AD%A6%E4%BC%9A&rft.issn=0289-3770&rft.eissn=2189-602X&rft.volume=40&rft.issue=5&rft.spage=355&rft.epage=363&rft_id=info:doi/10.15063%2Frigaku.KJ00008826560&rft.externalDocID=article_rigaku_40_5_40_KJ00008826560_article_char_ja |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0289-3770&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0289-3770&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0289-3770&client=summon |