ARDSの人工呼吸管理とその方向性について考える
ARDSにおける肺傷害のメカニズムには,①人工呼吸器を使用すること自体が肺傷害を悪化させる人工呼吸器関連肺傷害(ventilator-associated lung injury, VALI)や,②強い吸気努力が肺傷害を悪化させる自発呼吸誘発性肺傷害がある。VALIを防ぐために,低1回換気量と低いプラトー圧,PEEP付加を柱とする肺保護換気戦略が行われてきた。しかし,患者ごとに病態が不均一であるにもかかわらず画一的な治療を行ってきたため,過去20年間にわたりARDSの院内死亡率が改善しなかった可能性がある。ARDSの死亡率を低下させるためには,治療介入に効果のあるサブグループ/表現型を検出する...
        Saved in:
      
    
          | Published in | 日本集中治療医学会雑誌 Vol. 31; no. 5; pp. 469 - 476 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | Japanese | 
| Published | 
            一般社団法人 日本集中治療医学会
    
        01.09.2024
     | 
| Online Access | Get full text | 
| ISSN | 1340-7988 1882-966X  | 
| DOI | 10.3918/jsicm.31_469 | 
Cover
| Abstract | ARDSにおける肺傷害のメカニズムには,①人工呼吸器を使用すること自体が肺傷害を悪化させる人工呼吸器関連肺傷害(ventilator-associated lung injury, VALI)や,②強い吸気努力が肺傷害を悪化させる自発呼吸誘発性肺傷害がある。VALIを防ぐために,低1回換気量と低いプラトー圧,PEEP付加を柱とする肺保護換気戦略が行われてきた。しかし,患者ごとに病態が不均一であるにもかかわらず画一的な治療を行ってきたため,過去20年間にわたりARDSの院内死亡率が改善しなかった可能性がある。ARDSの死亡率を低下させるためには,治療介入に効果のあるサブグループ/表現型を検出することにより,人工呼吸理戦略を「画一的治療」から「個別化治療」へと発展させる必要がある。 | 
    
|---|---|
| AbstractList | ARDSにおける肺傷害のメカニズムには,①人工呼吸器を使用すること自体が肺傷害を悪化させる人工呼吸器関連肺傷害(ventilator-associated lung injury, VALI)や,②強い吸気努力が肺傷害を悪化させる自発呼吸誘発性肺傷害がある。VALIを防ぐために,低1回換気量と低いプラトー圧,PEEP付加を柱とする肺保護換気戦略が行われてきた。しかし,患者ごとに病態が不均一であるにもかかわらず画一的な治療を行ってきたため,過去20年間にわたりARDSの院内死亡率が改善しなかった可能性がある。ARDSの死亡率を低下させるためには,治療介入に効果のあるサブグループ/表現型を検出することにより,人工呼吸理戦略を「画一的治療」から「個別化治療」へと発展させる必要がある。 | 
    
| Author | 吉田, 健史 星野, 太希  | 
    
| Author_xml | – sequence: 1 fullname: 吉田, 健史 organization: 大阪大学大学院医学系研究科生体統御医学講座麻酔集中治療医学教室 – sequence: 1 fullname: 星野, 太希 organization: 大阪大学大学院医学系研究科生体統御医学講座麻酔集中治療医学教室  | 
    
| BookMark | eNo9kEtLw0AcxBepYK29-TVS_5vdbHZv1vqEguADvIXNJtGEtkrSi7euighe2os3D4IvEHpVi99mTevHMFrxMjPwg4GZeVTqHHdChBYx1IjAfCnJYtWuEexRJmZQGXNuW4Kxg1KRCQXLFZzPoWqWxT6AzVwMQMpoub6zumv08HM0yl8f8sFH3n-bDO8m_Uujn42-LdD45j3vD8a9J6NfjL43-sLox6_eudFX5ux6Ac1GspWF1T-voP31tb3GptXc3thq1JtWYgOTlgwUi4hgyhGKEsbs0AHMMY0C7lM7YuBzTgPhsIhRBZyCLcAl0gHhcp8HglTQyrQ3ybryMPRO0rgt01NPpt1YtULvd75XzHd-ZHrDP1RHMvUSSb4B8K9sAg | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 日本集中治療医学会 | 
    
| Copyright_xml | – notice: 2024 日本集中治療医学会 | 
    
| DOI | 10.3918/jsicm.31_469 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1882-966X | 
    
| EndPage | 476 | 
    
| ExternalDocumentID | article_jsicm_31_5_31_31_469_article_char_ja | 
    
| GroupedDBID | 123 ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 EIHBH JSF KQ8 RJT  | 
    
| ID | FETCH-LOGICAL-j206a-adc6f396c59c43662e501814fd8b42f60b884d956f64c084029073a50978b8d93 | 
    
| ISSN | 1340-7988 | 
    
| IngestDate | Wed Sep 03 06:30:22 EDT 2025 | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Issue | 5 | 
    
| Language | Japanese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-j206a-adc6f396c59c43662e501814fd8b42f60b884d956f64c084029073a50978b8d93 | 
    
| OpenAccessLink | https://www.jstage.jst.go.jp/article/jsicm/31/5/31_31_469/_article/-char/ja | 
    
| PageCount | 8 | 
    
| ParticipantIDs | jstage_primary_article_jsicm_31_5_31_31_469_article_char_ja | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024/09/01 | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024/09/01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 日本集中治療医学会雑誌 | 
    
| PublicationTitleAlternate | 日集中医誌 | 
    
| PublicationYear | 2024 | 
    
| Publisher | 一般社団法人 日本集中治療医学会 | 
    
| Publisher_xml | – name: 一般社団法人 日本集中治療医学会 | 
    
| References | 30) Guérin C, Reignier J, Richard JC, et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159-68. 43) Richard JC, Terzi N, Yonis H, et al; VT4COVID collaborators. Ultra-low tidal volume ventilation for COVID-19-related ARDS in France (VT4COVID): a multicentre, open-label, parallel-group, randomised trial. Lancet Respir Med 2023;11:991-1002. 10) Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013;188:1420-7. 55) Zerbib Y, Lambour A, Maizel J, et al. Respiratory effects of lung recruitment maneuvers depend on the recruitment-to-inflation ratio in patients with COVID-19-related acute respiratory distress syndrome. Crit Care 2022;26:12. 3) Bellani G, Messa C, Guerra L, et al. Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-D-glucose PET/CT study. Crit Care Med 2009;37:2216-22. 24) Dianti J, Fard S, Wong J, et al. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: a physiological trial. Crit Care 2022;26:259. 40) Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747-55. 20) Yoshida T, Tanaka A, Roldan R, et al. Prone Position Reduces Spontaneous Inspiratory Effort in Patients with Acute Respiratory Distress Syndrome: A Bicenter Study. Am J Respir Crit Care Med 2021;203:1437-40. 31) Gattinoni L, Tognoni G, Pesenti A, et al; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73. 48) Mauri T, Yoshida T, Bellani G, et al; PLeUral pressure working Group (PLUG–Acute Respiratory Failure section of the European Society of Intensive Care Medicine). Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016;42:1360-73. 5) Gattinoni L, Marini JJ, Pesenti A, et al. The “baby lung” became an adult. Intensive Care Med 2016;42:663-73. 15) Hashimoto H, Yoshida T, Firstiogusran AMF, et al. Asynchrony Injures Lung and Diaphragm in Acute Respiratory Distress Syndrome. Crit Care Med 2023;51:e234-2. 18) Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363:1107-16. 36) Sinha P, Churpek MM, Calfee CS. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. Am J Respir Crit Care Med 2020;202:996-1004. 53) Sarge T, Baedorf-Kassis E, Banner-Goodspeed V, et al; EPVent-2 Study Group. Effect of Esophageal Pressure-guided Positive End-Expiratory Pressure on Survival from Acute Respiratory Distress Syndrome: A Risk-based and Mechanistic Reanalysis of the EPVent-2 Trial. Am J Respir Crit Care Med 2021;204:1153-63. 16) Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015;41:633-41. 12) Oswalt CE, Gates GA, Holmstrom MG. Pulmonary edema as a complication of acute airway obstruction. JAMA 1977;238:1833-5. 59) Yoshida T, Piraino T, Lima CAS, et al. Regional Ventilation Displayed by Electrical Impedance Tomography as an Incentive to Decrease Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2019;200:933-7. 8) Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012;40:1578-85. 33) Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9. 51) Beitler JR, Sarge T, Banner-Goodspeed VM, et al; EPVent-2 Study Group. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2019;321:846-57. 32) Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87. 42) Laffey JG, Bellani G, Pham T, et al; LUNG SAFE Investigators and the ESICM Trials Group. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 2016;42:1865-76. 19) Qadir N, Sahetya S, Munshi L, et al. An Update on Management of Adult Patients with Acute Respiratory Distress Syndrome: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2024;209:24-36. 44) Goligher EC, Costa ELV, Yarnell CJ, et al. Effect of Lowering Vt on Mortality in Acute Respiratory Distress Syndrome Varies with Respiratory System Elastance. Am J Respir Crit Care Med 2021;203:1378-85. 52) Cavalcanti AB, Amato MBP, Serpa-Neto A. The Elusive Search for “Best PEEP” and Whether Esophageal Pressure Monitoring Helps. JAMA 2019;321:839-41. 39) Calfee CS, Delucchi KL, Sinha P, et al; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018;6:691-8. 22) Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care 2020;26:59-65. 46) Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010;303:865-73. 28) Laffey JG, Kavanagh BP. Negative trials in critical care: why most research is probably wrong. Lancet Respir Med 2018;6:659-60. 58) Pereira SM, Tucci MR, Morais CCA, et al. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology 2018;129:1070-81. 17) Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med 2017;43:184-91. 29) Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 2017;5:524-34. 13) Yoshida T, Fujino Y, Amato MB, et al. Fifty Years of Research in ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med 2017;195:985-92. 60) Brochard L, Yoshida T, Amato M. Reply to Frerichs et al. Simple Electrical Impedance Tomography Measures for the Assessment of Ventilation Distribution. Am J Respir Crit Care Med 2020;201:388. 25) Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 2020;46:606-18. 35) Gattinoni L, Carlesso E, Taccone P, et al. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76:448-54. 23) Spinelli E, Pesenti A, Slobod D, et al. Clinical risk factors for increased respiratory drive in intubated hypoxemic patients. Crit Care 2023;27:138. 34) Taccone P, Pesenti A, Latini R, et al; Prone-Supine II Study Group. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84. 7) Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164:43-9. 11) Cornejo RA, Arellano DH, Ruiz-Rudolph P, et al. Inflammatory biomarkers and pendelluft magnitude in ards patients transitioning from controlled to partial support ventilation. Sci Rep 2022;12:20233. 1) Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005;31:776-84. 56) Taenaka H, Yoshida T, Hashimoto H, et al. Personalized ventilatory strategy based on lung recruitablity in COVID-19-associated acute respiratory distress syndrome: a prospective clinical study. Crit Care 2023;27:152. 54) Chen L, Del Sorbo L, Grieco DL, et al. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med 2020;201:178-87. 9) Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013;41:536-45. 14) Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988;137:1159-64. 37) Calfee CS, Delucchi K, Parsons PE, et al; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014;2:611-20. 47) Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006;354:1775-86. 6) Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8. 27) Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005;353:1685-93. 41) Chen L, Grieco DL, Beloncle F, et al. Partition of respiratory mechanics in patient  | 
    
| References_xml | – reference: 1) Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005;31:776-84. – reference: 15) Hashimoto H, Yoshida T, Firstiogusran AMF, et al. Asynchrony Injures Lung and Diaphragm in Acute Respiratory Distress Syndrome. Crit Care Med 2023;51:e234-2. – reference: 47) Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006;354:1775-86. – reference: 32) Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87. – reference: 25) Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 2020;46:606-18. – reference: 18) Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363:1107-16. – reference: 38) Famous KR, Delucchi K, Ware LB, et al; ARDS Network. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am J Respir Crit Care Med 2017;195:331-8. – reference: 58) Pereira SM, Tucci MR, Morais CCA, et al. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology 2018;129:1070-81. – reference: 42) Laffey JG, Bellani G, Pham T, et al; LUNG SAFE Investigators and the ESICM Trials Group. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 2016;42:1865-76. – reference: 29) Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 2017;5:524-34. – reference: 40) Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747-55. – reference: 57) Frerichs I, Amato MB, van Kaam AH, et al; TREND study group. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2017;72:83-93. – reference: 23) Spinelli E, Pesenti A, Slobod D, et al. Clinical risk factors for increased respiratory drive in intubated hypoxemic patients. Crit Care 2023;27:138. – reference: 6) Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301-8. – reference: 49) Yoshida T, Amato MBP, Grieco DL, et al. Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury. Am J Respir Crit Care Med 2018;197:1018-26. – reference: 31) Gattinoni L, Tognoni G, Pesenti A, et al; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73. – reference: 3) Bellani G, Messa C, Guerra L, et al. Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-D-glucose PET/CT study. Crit Care Med 2009;37:2216-22. – reference: 11) Cornejo RA, Arellano DH, Ruiz-Rudolph P, et al. Inflammatory biomarkers and pendelluft magnitude in ards patients transitioning from controlled to partial support ventilation. Sci Rep 2022;12:20233. – reference: 56) Taenaka H, Yoshida T, Hashimoto H, et al. Personalized ventilatory strategy based on lung recruitablity in COVID-19-associated acute respiratory distress syndrome: a prospective clinical study. Crit Care 2023;27:152. – reference: 10) Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013;188:1420-7. – reference: 36) Sinha P, Churpek MM, Calfee CS. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. Am J Respir Crit Care Med 2020;202:996-1004. – reference: 39) Calfee CS, Delucchi KL, Sinha P, et al; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018;6:691-8. – reference: 5) Gattinoni L, Marini JJ, Pesenti A, et al. The “baby lung” became an adult. Intensive Care Med 2016;42:663-73. – reference: 14) Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988;137:1159-64. – reference: 48) Mauri T, Yoshida T, Bellani G, et al; PLeUral pressure working Group (PLUG–Acute Respiratory Failure section of the European Society of Intensive Care Medicine). Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016;42:1360-73. – reference: 19) Qadir N, Sahetya S, Munshi L, et al. An Update on Management of Adult Patients with Acute Respiratory Distress Syndrome: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2024;209:24-36. – reference: 16) Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015;41:633-41. – reference: 51) Beitler JR, Sarge T, Banner-Goodspeed VM, et al; EPVent-2 Study Group. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2019;321:846-57. – reference: 44) Goligher EC, Costa ELV, Yarnell CJ, et al. Effect of Lowering Vt on Mortality in Acute Respiratory Distress Syndrome Varies with Respiratory System Elastance. Am J Respir Crit Care Med 2021;203:1378-85. – reference: 55) Zerbib Y, Lambour A, Maizel J, et al. Respiratory effects of lung recruitment maneuvers depend on the recruitment-to-inflation ratio in patients with COVID-19-related acute respiratory distress syndrome. Crit Care 2022;26:12. – reference: 24) Dianti J, Fard S, Wong J, et al. Strategies for lung- and diaphragm-protective ventilation in acute hypoxemic respiratory failure: a physiological trial. Crit Care 2022;26:259. – reference: 2) Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013;369:2126-36. – reference: 9) Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013;41:536-45. – reference: 26) Bellani G, Laffey JG, Pham T, et al; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016;315:788-800. – reference: 27) Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005;353:1685-93. – reference: 52) Cavalcanti AB, Amato MBP, Serpa-Neto A. The Elusive Search for “Best PEEP” and Whether Esophageal Pressure Monitoring Helps. JAMA 2019;321:839-41. – reference: 20) Yoshida T, Tanaka A, Roldan R, et al. Prone Position Reduces Spontaneous Inspiratory Effort in Patients with Acute Respiratory Distress Syndrome: A Bicenter Study. Am J Respir Crit Care Med 2021;203:1437-40. – reference: 30) Guérin C, Reignier J, Richard JC, et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159-68. – reference: 45) Richard JC, Rabilloud M, Chorfa F, et al. Discussions on VT4COVID-Authors’ reply. Lancet Respir Med 2023;11:e91-2. – reference: 21) Katira BH, Osada K, Engelberts D, et al. Positive End-Expiratory Pressure, Pleural Pressure, and Regional Compliance during Pronation: An Experimental Study. Am J Respir Crit Care Med 2021;203:1266-74. – reference: 33) Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9. – reference: 28) Laffey JG, Kavanagh BP. Negative trials in critical care: why most research is probably wrong. Lancet Respir Med 2018;6:659-60. – reference: 7) Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164:43-9. – reference: 13) Yoshida T, Fujino Y, Amato MB, et al. Fifty Years of Research in ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med 2017;195:985-92. – reference: 50) Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008;359:2095-104. – reference: 43) Richard JC, Terzi N, Yonis H, et al; VT4COVID collaborators. Ultra-low tidal volume ventilation for COVID-19-related ARDS in France (VT4COVID): a multicentre, open-label, parallel-group, randomised trial. Lancet Respir Med 2023;11:991-1002. – reference: 35) Gattinoni L, Carlesso E, Taccone P, et al. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76:448-54. – reference: 22) Yoshida T, Grieco DL, Brochard L, et al. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care 2020;26:59-65. – reference: 46) Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010;303:865-73. – reference: 41) Chen L, Grieco DL, Beloncle F, et al. Partition of respiratory mechanics in patients with acute respiratory distress syndrome and association with outcome: a multicentre clinical study. Intensive Care Med 2022;48:888-98. – reference: 60) Brochard L, Yoshida T, Amato M. Reply to Frerichs et al. Simple Electrical Impedance Tomography Measures for the Assessment of Ventilation Distribution. Am J Respir Crit Care Med 2020;201:388. – reference: 59) Yoshida T, Piraino T, Lima CAS, et al. Regional Ventilation Displayed by Electrical Impedance Tomography as an Incentive to Decrease Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2019;200:933-7. – reference: 37) Calfee CS, Delucchi K, Parsons PE, et al; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014;2:611-20. – reference: 54) Chen L, Del Sorbo L, Grieco DL, et al. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med 2020;201:178-87. – reference: 34) Taccone P, Pesenti A, Latini R, et al; Prone-Supine II Study Group. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84. – reference: 4) Borges JB, Costa EL, Suarez-Sipmann F, et al. Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury*. Crit Care Med 2014;42:e279-87. – reference: 12) Oswalt CE, Gates GA, Holmstrom MG. Pulmonary edema as a complication of acute airway obstruction. JAMA 1977;238:1833-5. – reference: 8) Yoshida T, Uchiyama A, Matsuura N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012;40:1578-85. – reference: 53) Sarge T, Baedorf-Kassis E, Banner-Goodspeed V, et al; EPVent-2 Study Group. Effect of Esophageal Pressure-guided Positive End-Expiratory Pressure on Survival from Acute Respiratory Distress Syndrome: A Risk-based and Mechanistic Reanalysis of the EPVent-2 Trial. Am J Respir Crit Care Med 2021;204:1153-63. – reference: 17) Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med 2017;43:184-91.  | 
    
| SSID | ssib002671003 ssib058493938 ssib002484714 ssib002671004 ssib002003987 ssib002227213 ssib002670218 ssib026645110 ssib003171117 ssj0064966 ssib002670219  | 
    
| Score | 1.9891238 | 
    
| Snippet | ARDSにおける肺傷害のメカニズムには,①人工呼吸器を使用すること自体が肺傷害を悪化させる人工呼吸器関連肺傷害(ventilator-associated lung injury, VALI)や,②強い吸... | 
    
| SourceID | jstage | 
    
| SourceType | Publisher | 
    
| StartPage | 469 | 
    
| Title | ARDSの人工呼吸管理とその方向性について考える | 
    
| URI | https://www.jstage.jst.go.jp/article/jsicm/31/5/31_31_469/_article/-char/ja | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 日本集中治療医学会雑誌, 2024/09/01, Vol.31(5), pp.469-476 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1882-966X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064966 issn: 1340-7988 databaseCode: KQ8 dateStart: 19940101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9VAMNQK4kX8xG96cE_yapLdbHbw4uY1pSgV1BZ6eyR5CfjAKtJePDUqInhpL948CH6B0KtaxD8TX-vPcGY3SWPxYFV4hMnu7GR2dpOZ3Tcz6ziX0sCXiRdkPcGTYU8kAL0kSJNemuQw5EXoQkEb-vM35dyiuL4ULE0c-NbxWlpdSaezR7-NK_mbUcUyHFeKkt3HyLZEsQBhHF-84gjj9Y_GWN-eucNijtYg0zGLBYs0_eKARSHTAQHgsahvAJdFisUhYWqPACxRsmmuagBmOgQlA8kiqJsjKSxRLtNhgxM1gKgB1QAaKStCVrypso_wmYq6FrF5iuUWgT7TyC0wiAxvgnjWM1QV-SyKDNtARJAl1TclASFoi9xnoOvmxC221YjWTKq6HwoMGUR3aYIZUl4tLjWLD9rFR44Ug1kiqUKm4gYf-6utnFVDv9458UXrGmbnet0JlATJQ5n-hUQgig0_EdPc9I8zCNoxvPzfxdLRPpzcO8Geczid2zJaAoE97rFVWbXivNt1CjD6R9hzb2pTRtijdfZqSQ4eRX6M8DNwb5p7g7bRL3nH61k9MGgDRAvoYtEHTSWFBg5GuD456KNWpaNTbtzqLF8p8lt1twv80O-aj4Jso-52QEgm5577bjo8ykXF99x3vAC80OvETaPtSdn3Wn2EtjZw4O2_jFKA8WVoxW4DY0g8V7rCQeN0hEu1xs3TWJ4LR50j9ZJxSlthHHMmRslx59B87RRzwrlGn4Gq3Py-tTX-9Ha88XW8_nln8_XO-rOq_FCVr7Bq--WX8frG9tr7qvxYlW-q8mlVvvux9qQqn1ePX5x0Fmfjhf5crz4YpTfyXZn0kmEmCw4yCyATXEo_N2k5RTFUqfAL6aZKiSEEspAic5VwfUBNngQUs5WqIfBTzuTy_eX8tDMFfppkaSEkpSr0IE8LmaTZMC9S5We5gjPOVdv3wQOb_Wawn3lx9p9an3MO7762553JlYer-QVcAqykF808-wlQkstm | 
    
| linkProvider | Colorado Alliance of Research Libraries | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARDS%E3%81%AE%E4%BA%BA%E5%B7%A5%E5%91%BC%E5%90%B8%E7%AE%A1%E7%90%86%E3%81%A8%E3%81%9D%E3%81%AE%E6%96%B9%E5%90%91%E6%80%A7%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6%E8%80%83%E3%81%88%E3%82%8B&rft.jtitle=%E6%97%A5%E6%9C%AC%E9%9B%86%E4%B8%AD%E6%B2%BB%E7%99%82%E5%8C%BB%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E5%90%89%E7%94%B0%2C+%E5%81%A5%E5%8F%B2&rft.au=%E6%98%9F%E9%87%8E%2C+%E5%A4%AA%E5%B8%8C&rft.date=2024-09-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E9%9B%86%E4%B8%AD%E6%B2%BB%E7%99%82%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=1340-7988&rft.eissn=1882-966X&rft.volume=31&rft.issue=5&rft.spage=469&rft.epage=476&rft_id=info:doi/10.3918%2Fjsicm.31_469&rft.externalDocID=article_jsicm_31_5_31_31_469_article_char_ja | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-7988&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-7988&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-7988&client=summon |