High-Performance FPGA-Based Accelerator of L-BFGS for 3D Face Reconstruction

D face reconstruction is a hot topic in computer graphics and vision, with many efficient algorithms recently proposed that offer good performance but suffer from high computational complexity. The FaceScape algorithm is promising, integrating prior knowledge to effectively recover highly detailed a...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Computer Society Annual Symposium on VLSI Vol. 1; pp. 1 - 6
Main Authors Pan, Haoran, Xiong, Bohang, Tian, Jing, Zhang, Shikun, Zhu, Hao, Wang, Zhongfeng
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.07.2025
Subjects
Online AccessGet full text
ISSN2159-3477
DOI10.1109/ISVLSI65124.2025.11130257

Cover

Abstract D face reconstruction is a hot topic in computer graphics and vision, with many efficient algorithms recently proposed that offer good performance but suffer from high computational complexity. The FaceScape algorithm is promising, integrating prior knowledge to effectively recover highly detailed and riggable 3D face models from a single image input with high robustness. Its computations are relatively small but still cannot meet real-time requirements in most application scenarios. In this paper, we propose a high-speed hardware accelerator for the core part (namely the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm) of FaceScape aiming to deal with this problem. Many optimization techniques, especially novel algorithmic transformations and architectural schemes, have been introduced and applied. Experimental results demonstrate that our FPGA implementation of L-BFGS for FaceScape achieves approximately 5.6 \times speedup over the optimized C implementation and runs over 100 \times faster than the original Python implementation.
AbstractList D face reconstruction is a hot topic in computer graphics and vision, with many efficient algorithms recently proposed that offer good performance but suffer from high computational complexity. The FaceScape algorithm is promising, integrating prior knowledge to effectively recover highly detailed and riggable 3D face models from a single image input with high robustness. Its computations are relatively small but still cannot meet real-time requirements in most application scenarios. In this paper, we propose a high-speed hardware accelerator for the core part (namely the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm) of FaceScape aiming to deal with this problem. Many optimization techniques, especially novel algorithmic transformations and architectural schemes, have been introduced and applied. Experimental results demonstrate that our FPGA implementation of L-BFGS for FaceScape achieves approximately 5.6 \times speedup over the optimized C implementation and runs over 100 \times faster than the original Python implementation.
Author Wang, Zhongfeng
Zhang, Shikun
Tian, Jing
Pan, Haoran
Xiong, Bohang
Zhu, Hao
Author_xml – sequence: 1
  givenname: Haoran
  surname: Pan
  fullname: Pan, Haoran
  email: haoranpa@smail.nju.edu.cn
  organization: Nanjing University,School of Integrated Circuits,Suzhou,China
– sequence: 2
  givenname: Bohang
  surname: Xiong
  fullname: Xiong, Bohang
  email: bohangxiong@smail.nju.edu.cn
  organization: Nanjing University,School of Electronic Science and Engineering,Nanjing,China
– sequence: 3
  givenname: Jing
  surname: Tian
  fullname: Tian, Jing
  email: tianjing@nju.edu.cn
  organization: Nanjing University,School of Integrated Circuits,Suzhou,China
– sequence: 4
  givenname: Shikun
  surname: Zhang
  fullname: Zhang, Shikun
  email: zhangshikun@smail.nju.edu.cn
  organization: Nanjing University,School of Integrated Circuits,Suzhou,China
– sequence: 5
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
  email: zh@nju.edu.cn
  organization: Nanjing University,School of Intelligent Science and Technology,Suzhou,China
– sequence: 6
  givenname: Zhongfeng
  surname: Wang
  fullname: Wang, Zhongfeng
  email: zfwang@nju.edu.cn
  organization: Nanjing University,School of Electronic Science and Engineering,Nanjing,China
BookMark eNo1j0FOwzAURA0Cibb0BizMAVz8bceJl2lp0kiRqEjFtnKcbwhqE-SEBbcnCFiNZvQ0mpmTq67vkJB74CsAbh6K6qWsCh2BUCvBRTSlICeNL8jSxCaREiKp4lhfkpmAyLAfc0Pmw_DOuUxAiRkpd-3rG9tj8H04284hzfZ5ytZ2wIamzuEJgx37QHtPS7bO8opOJJWPNLMT_Iyu74YxfLqx7btbcu3tacDlny7IIdseNjtWPuXFJi1Za-TIRM3BKyNEgpGWGjTWRgDoxkS19B61Ebypee3UtBmMj8FbpYRM6ga9QCMX5O63tkXE40dozzZ8Hf_Py299vE7x
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISVLSI65124.2025.11130257
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331534776
EISSN 2159-3477
EndPage 6
ExternalDocumentID 11130257
Genre orig-research
GrantInformation_xml – fundername: China Association for Science and Technology
  funderid: 10.13039/100010097
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: 10.13039/501100004608
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-2b01f49228e563616eb92116d95b3ffe6920db0bc415919f71fa44238bdef2e93
IEDL.DBID RIE
IngestDate Wed Sep 03 07:09:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-2b01f49228e563616eb92116d95b3ffe6920db0bc415919f71fa44238bdef2e93
PageCount 6
ParticipantIDs ieee_primary_11130257
PublicationCentury 2000
PublicationDate 2025-July-6
PublicationDateYYYYMMDD 2025-07-06
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Computer Society Annual Symposium on VLSI
PublicationTitleAbbrev ISVLSI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038142
Score 2.299056
Snippet D face reconstruction is a hot topic in computer graphics and vision, with many efficient algorithms recently proposed that offer good performance but suffer...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 3D face reconstruction
Approximation algorithms
Computational modeling
Computer architecture
Faces
Field programmable gate arrays
FPGA
hardware implementation
Image reconstruction
L-BFGS algorithm
Optimization
Solid modeling
Three-dimensional displays
Very large scale integration
Title High-Performance FPGA-Based Accelerator of L-BFGS for 3D Face Reconstruction
URI https://ieeexplore.ieee.org/document/11130257
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fS8MwEMcPtwfRF39N_E0EX7O1aZomj_NHt8kcg03Z22jaC4iw-bC9-Nd76VanguBbKQltc9DP5XL3PYAbclIzE-eKR5nVnHituNUFcoXaYOjIpUAfh3waqO6zfJzEk3WxelkLg4hl8hk2_WV5ll_M86UPlbV8W3RidFKDWqLVqlir-u0SeaTYhuu1iGarN3rpj3qKeOYjJyJuVpN_tFEpKZLuwaB6_ip55K25XNhm_vFLmvHfL7gPjU3BHht-oegAtnB2CLvftAaPoO8zOvhwUyfA0mGnzW-JYgVr5znhpzxxZ3PH-vw27YwYjWTRPUszGuy3qRux2QaM04fxXZevWynwVxMtuLBB6KQRQmOsIhUqtIZ2fqowsY2cQ2VEUNjA5oRzExqXhC6TZDhtC3QCTXQM9dl8hifApLYyc6hF5AIpTaizAMkrs3liTeHC5BQafl2m7yuxjGm1JGd_3D-HHW-eMgNWXUCdPgQvifMLe1Xa9xPF8KTo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fS8MwEMeDTvDHi78m_jaCr6ltmqbJ46Z2m3ZjsCl7G017ARE2H7YX_3ov3epUEHwrJYU0B_lcLnffI-QGndRMR7lkYWYUQ15LZlQBTILSEFh0KcDFIbs92X4Wj6NotCxWL2thAKBMPgPPPZZ3-cU0n7tQ2a1ri46MjtfJRiSEiBblWtXGi-wRfJNcL2U0bzuDl3TQkUg0FzvhkVd9_qORSsmRZJf0qhks0kfevPnMePnHL3HGf09xj9RXJXu0_wWjfbIGkwOy801t8JCkLqeD9VeVAjTptxqsiRwraCPPEUDlnTudWpqyZtIaUBxJw3uaZDjYHVRXcrN1MkwehndttmymwF51OGPc-IEVmnMFkQxlIMFoPPvJQkcmtBak5n5hfJMj0HWgbRzYTKDplCnActDhEalNphM4JlQoIzILiofWF0IHKvMB_TKTx0YXNohPSN2ty_h9IZcxrpbk9I_3V2SrPeym47TTezoj285UZT6sPCc1_Cm4QOrPzGVp60-cVqg1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Computer+Society+Annual+Symposium+on+VLSI&rft.atitle=High-Performance+FPGA-Based+Accelerator+of+L-BFGS+for+3D+Face+Reconstruction&rft.au=Pan%2C+Haoran&rft.au=Xiong%2C+Bohang&rft.au=Tian%2C+Jing&rft.au=Zhang%2C+Shikun&rft.date=2025-07-06&rft.pub=IEEE&rft.eissn=2159-3477&rft.volume=1&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISVLSI65124.2025.11130257&rft.externalDocID=11130257