Deep Learning in Medical Image Classification from MRI-Based Brain Tumor Images

Brain tumors are among the deadliest diseases in the world. Magnetic Resonance Imaging (MRI) is one of the most effective ways to detect brain tumors. Accurate detection of brain tumors based on MRI scans is critical, as it can potentially save many lives and facilitate better decision-making at the...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Power, Intelligent Computing and Systems (Online) pp. 840 - 844
Main Authors Liu, Xiaoyi, Wang, Zhuoyue
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.07.2024
Subjects
Online AccessGet full text
ISSN2834-8567
DOI10.1109/ICPICS62053.2024.10796108

Cover

More Information
Summary:Brain tumors are among the deadliest diseases in the world. Magnetic Resonance Imaging (MRI) is one of the most effective ways to detect brain tumors. Accurate detection of brain tumors based on MRI scans is critical, as it can potentially save many lives and facilitate better decision-making at the early stages of the disease. Within our paper, four different types of MRI-based images have been collected from the database: glioma tumor, no tumor, pituitary tumor, and meningioma tumor. Our study focuses on making predictions for brain tumor classification. Five models, including four pre-trained models (MobileNet, EfficientNet-B0, ResNet-18, and VGG16) and one new model, MobileNet-BT, have been proposed for this study.
ISSN:2834-8567
DOI:10.1109/ICPICS62053.2024.10796108