Feature selection based file type identification algorithm

Identifying the true type of an arbitrary file is very important in information security. Methods based on file extensions or magic numbers can be easily spoofed, while a more reliable way is based on analyzing the file's binary content. We propose an algorithm to generate models for each file...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 3; pp. 58 - 62
Main Authors Ding Cao, Junyong Luo, Meijuan Yin, Huijie Yang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISBN9781424465828
1424465826
DOI10.1109/ICICISYS.2010.5658559

Cover

More Information
Summary:Identifying the true type of an arbitrary file is very important in information security. Methods based on file extensions or magic numbers can be easily spoofed, while a more reliable way is based on analyzing the file's binary content. We propose an algorithm to generate models for each file type based on analyzing the binary contents of a set of known input files by using n-gram analysis and design a novel feature selection evaluation function for extracting signatures from the models, then using the signatures to recognize the true type of unknown files. Our aim is not to use the structure and key words of any specific file types as this allows the approach to be applied to general file types. Experiments show that the proposed approach is promising especially when the feature selection evaluation function is applied.
ISBN:9781424465828
1424465826
DOI:10.1109/ICICISYS.2010.5658559