From 3D point clouds to climbing stairs: A comparison of plane segmentation approaches for humanoids

In this paper, we consider the problem of building 3D models of complex staircases based on laser range data acquired with a humanoid. These models have to be sufficiently accurate to enable the robot to reliably climb up the staircase. We evaluate two state-of-the-art approaches to plane segmentati...

Full description

Saved in:
Bibliographic Details
Published in2011 11th IEEE-RAS International Conference on Humanoid Robots pp. 93 - 98
Main Authors Osswald, Stefan, Gutmann, Jens-Steffen, Hornung, Armin, Bennewitz, Maren
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2011
Subjects
Online AccessGet full text
ISBN9781612848662
1612848664
ISSN2164-0572
DOI10.1109/Humanoids.2011.6100836

Cover

More Information
Summary:In this paper, we consider the problem of building 3D models of complex staircases based on laser range data acquired with a humanoid. These models have to be sufficiently accurate to enable the robot to reliably climb up the staircase. We evaluate two state-of-the-art approaches to plane segmentation for humanoid navigation given 3D range data about the environment. The first approach initially extracts line segments from neighboring 2D scan lines, which are successively combined if they lie on the same plane. The second approach estimates the main directions in the environment by randomly sampling points and applying a clustering technique afterwards to find planes orthogonal to the main directions. We propose extensions for this basic approach to increase the robustness in complex environments which may contain a large number of different planes and clutter. In practical experiments, we thoroughly evaluate all methods using data acquired with a laser-equipped Nao robot in a multi-level environment. As the experimental results show, the reconstructed 3D models can be used to autonomously climb up complex staircases.
ISBN:9781612848662
1612848664
ISSN:2164-0572
DOI:10.1109/Humanoids.2011.6100836