Faster algorithms for finding a minimum K-way cut in a weighted graph
This paper presents algorithms for computing a minimum 3-way cut and a minimum 4-way cut of an undirected weighted graph G. Let G=(V,E) be an undirected graph with n vertices, m edges and positive edge weights. Goldschmidt et al. presented an algorithm for the minimum /spl kappa/-way cut problem wit...
        Saved in:
      
    
          | Published in | 1997 IEEE International Symposium on Circuits and Systems Vol. 2; pp. 1009 - 1012 vol.2 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English Japanese  | 
| Published | 
            IEEE
    
        22.11.2002
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9780780335837 078033583X  | 
| DOI | 10.1109/ISCAS.1997.621902 | 
Cover
| Summary: | This paper presents algorithms for computing a minimum 3-way cut and a minimum 4-way cut of an undirected weighted graph G. Let G=(V,E) be an undirected graph with n vertices, m edges and positive edge weights. Goldschmidt et al. presented an algorithm for the minimum /spl kappa/-way cut problem with fixed /spl kappa/, that requires O(n/sup 4/) and O(n/sup 9/) maximum flow computations, respectively, to compute a minimum 3-way cut and a minimum 4-way cut of G. In this paper, we first show some properties on minimum 3-way cuts and minimum 4-way cuts, which indicate a recursive structure of the minimum X-way cut problem when /spl kappa/=3 and 4. Then, based on those properties, we give divide-and-conquer algorithms for computing a minimum 3-way cut and a minimum 4-way cut of G, which require O(n/sup 3/) and O(n/sup 4/) maximum flow computations, respectively. This means that the proposed algorithms are the fastest ones ever known. | 
|---|---|
| ISBN: | 9780780335837 078033583X  | 
| DOI: | 10.1109/ISCAS.1997.621902 |