An improved YEF-DCT based compression algorithm for video capsule endoscopy

Video capsule endoscopy is a non-invasive technique to receive images of intestine for medical diagnostics. The main design challenges of endoscopy capsule are accruing and transmitting acceptable quality images by utilizing as less hardware and battery power as possible. In order to save wireless t...

Full description

Saved in:
Bibliographic Details
Published in2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2014; pp. 2452 - 2455
Main Authors Mostafa, Atahar, Khan, Tareq, Wahid, Khan
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2014
Subjects
Online AccessGet full text
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2014.6944118

Cover

More Information
Summary:Video capsule endoscopy is a non-invasive technique to receive images of intestine for medical diagnostics. The main design challenges of endoscopy capsule are accruing and transmitting acceptable quality images by utilizing as less hardware and battery power as possible. In order to save wireless transmission power and bandwidth, an efficient image compression algorithm needs to be implemented inside the endoscopy electronic capsule. In this paper, an integer discrete-cosine-transform (DCT) based algorithm is presented that works on a low-complexity color-space specially designed for wireless capsule endoscopy application. First of all, thousands of human endoscopic images and video frames have been analyzed to identify special intestinal features present in those frames. Then a color space, referred as YEF, is used. The YEF converter is lossless and takes only a few adders and shift operation to implement. A low-cost quantization scheme with variable chroma sub-sampling options is also implemented to achieve higher compression. Comparing with the existing works, the proposed transform coding based compressor performs strongly with an average compression ratio of 85% and a high image quality index, peak-signal-to-noise ratio (PSNR) of 52 dB.
ISSN:1094-687X
1557-170X
DOI:10.1109/EMBC.2014.6944118