Obstructive sleep apnea detection using SVM-based classification of ECG signal features

Sleep apnea is the instance when one either has pauses of breathing in their sleep, or has very low breath while asleep. This pause in breathing can range in frequency and duration. Obstructive sleep apnea (OSA) is the common form of sleep apnea, which is currently tested through polysomnography (PS...

Full description

Saved in:
Bibliographic Details
Published in2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2012; pp. 4938 - 4941
Main Authors Almazaydeh, L., Elleithy, K., Faezipour, M.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2012
Subjects
Online AccessGet full text
ISBN1424441196
9781424441198
ISSN1094-687X
1557-170X
DOI10.1109/EMBC.2012.6347100

Cover

More Information
Summary:Sleep apnea is the instance when one either has pauses of breathing in their sleep, or has very low breath while asleep. This pause in breathing can range in frequency and duration. Obstructive sleep apnea (OSA) is the common form of sleep apnea, which is currently tested through polysomnography (PSG) at sleep labs. PSG is both expensive and inconvenient as an expert human observer is required to work over night. New sleep apnea classification techniques are nowadays being developed by bioengineers for most comfortable and timely detection. This paper focuses on an automated classification algorithm which processes short duration epochs of the electrocardiogram (ECG) data. The presented classification technique is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high accuracy of 96.5% or higher. Furthermore, the proposed system can be used as a basis for future development of a tool for OSA screening.
ISBN:1424441196
9781424441198
ISSN:1094-687X
1557-170X
DOI:10.1109/EMBC.2012.6347100