Scale invariant cosegmentation for image groups
Our primary interest is in generalizing the problem of Cosegmentation to a large group of images, that is, concurrent segmentation of common foreground region(s) from multiple images. We further wish for our algorithm to offer scale invariance (foregrounds may have arbitrary sizes in different image...
Saved in:
Published in | CVPR 2011 pp. 1881 - 1888 |
---|---|
Main Authors | , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 1457703947 9781457703942 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2011.5995420 |
Cover
Summary: | Our primary interest is in generalizing the problem of Cosegmentation to a large group of images, that is, concurrent segmentation of common foreground region(s) from multiple images. We further wish for our algorithm to offer scale invariance (foregrounds may have arbitrary sizes in different images) and the running time to increase (no more than) near linearly in the number of images in the set. What makes this setting particularly challenging is that even if we ignore the scale invariance desiderata, the Cosegmentation problem, as formalized in many recent papers (except), is already hard to solve optimally in the two image case. A straightforward extension of such models to multiple images leads to loose relaxations; and unless we impose a distributional assumption on the appearance model, existing mechanisms for image-pair-wise measurement of foreground appearance variations lead to significantly large problem sizes (even for moderate number of images). This paper presents a surprisingly easy to implement algorithm which performs well, and satisfies all requirements listed above (scale invariance, low computational requirements, and viability for the multiple image setting). We present qualitative and technical analysis of the properties of this framework. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISBN: | 1457703947 9781457703942 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2011.5995420 |