A PID Control Algorithm for a Post-Prandial Hypoglycemic Clamp Study

Post-prandial hypoglycemia occurs 2-5 hours after food intake, in not only insulin-treated patients with diabetes but also other metabolic disorders. For example, postprandial hypoglycemia is an increasingly recognized late metabolic complication of bariatric surgery (also known as PBH), particularl...

Full description

Saved in:
Bibliographic Details
Published in2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2021; pp. 677 - 680
Main Authors Pavan, J., Dalla Man, C., Herzig, D., Bally, L., Del Favero, S.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.11.2021
Subjects
Online AccessGet full text
ISSN2694-0604
DOI10.1109/EMBC46164.2021.9630223

Cover

More Information
Summary:Post-prandial hypoglycemia occurs 2-5 hours after food intake, in not only insulin-treated patients with diabetes but also other metabolic disorders. For example, postprandial hypoglycemia is an increasingly recognized late metabolic complication of bariatric surgery (also known as PBH), particularly gastric bypass. Underlying mechanisms remain incompletely understood to date. Besides excessive insulin exposure, impaired counter-regulation may be a further pathophysiological feature. To test this hypothesis, we need standardized postprandial hypoglycemic clamp procedures in affected and unaffected individuals allowing to reach identical predefined postprandial hypoglycemic trajectories. Generally, in these experiments, clinical investigators manually adjust glucose infusion rate (GIR) to clamp blood glucose (BG) to a target hypoglycemic value. Nevertheless, reaching the desired target by manual adjustment may be challenging and possible glycemic undershoots when approaching hypoglycemia can be a safety concern for patients. In this study, we developed a PID algorithm to assist clinical investigators in adjusting GIR to reach the predefined trajectory and hypoglycemic target. The algorithm is developed in a manual mode to permit the clinical investigator to interfere. We test the controller in silico by simulating glucose-insulin dynamics in PBH and healthy nonsurgical individuals. Different scenarios are designed to test the robustness of the algorithm to different sources of variability and to errors, e.g. outliers in the BG measurements, sampling delays or missed measurements. The results prove that the PID algorithm is capable of accurately and safely reaching the target BG level, on both healthy and PBH subjects, with a median deviation from reference of 2.8% and 2.4% respectively.Clinical relevance- This control algorithm enables standardized, accurate and safe postprandial hypoglycemic clamps, as evidenced in silico in PBH patients and controls.
ISSN:2694-0604
DOI:10.1109/EMBC46164.2021.9630223