Decentralized Control Barrier Functions for Coupled Multi-Agent Systems under Signal Temporal Logic Tasks
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control synthesis problem for single-agent systems under sign...
Saved in:
Published in | 2019 18th European Control Conference (ECC) pp. 89 - 94 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
EUCA
01.06.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.23919/ECC.2019.8796109 |
Cover
Summary: | We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control synthesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the number of agents and induce even higher computational burdens. We propose a computationally-efficient control strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth analysis. Simulations show the efficacy of the presented method. |
---|---|
DOI: | 10.23919/ECC.2019.8796109 |