Block compressed sensing of images using directional transforms

Block-based random image sampling is coupled with a projection-driven compressed-sensing recovery that encourages sparsity in the domain of directional transforms simultaneously with a smooth reconstructed image. Both contourlets as well as complex-valued dual-tree wavelets are considered for their...

Full description

Saved in:
Bibliographic Details
Published in2009 16th IEEE International Conference on Image Processing (ICIP) pp. 3021 - 3024
Main Authors Sungkwang Mun, Fowler, J.E.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2009
Subjects
Online AccessGet full text
ISBN9781424456536
1424456533
ISSN1522-4880
DOI10.1109/ICIP.2009.5414429

Cover

More Information
Summary:Block-based random image sampling is coupled with a projection-driven compressed-sensing recovery that encourages sparsity in the domain of directional transforms simultaneously with a smooth reconstructed image. Both contourlets as well as complex-valued dual-tree wavelets are considered for their highly directional representation, while bivariate shrinkage is adapted to their multiscale decomposition structure to provide the requisite sparsity constraint. Smoothing is achieved via a Wiener filter incorporated into iterative projected Landweber compressed-sensing recovery, yielding fast reconstruction. The proposed approach yields images with quality that matches or exceeds that produced by a popular, yet computationally expensive, technique which minimizes total variation. Additionally, reconstruction quality is substantially superior to that from several prominent pursuits-based algorithms that do not include any smoothing.
ISBN:9781424456536
1424456533
ISSN:1522-4880
DOI:10.1109/ICIP.2009.5414429