Control of a ground vehicle using quadratic programming based control allocation techniques

This paper examines the use of control allocation techniques for the control of multiple inputs to a ground vehicle to track a desired yaw rate trajectory while minimizing vehicle sideslip. The proposed controller uses quadratic programming accompanied by linear quadratic regulator gains designed ar...

Full description

Saved in:
Bibliographic Details
Published in2004 American Control Conference Proceedings; Volume 5 of 6 Vol. 5; pp. 4704 - 4709 vol.5
Main Authors Plumlee, J.H., Bevly, D.M., Hodel, A.S.
Format Conference Proceeding Journal Article
LanguageEnglish
Published Piscataway NJ IEEE 01.01.2004
Evanston IL American Automatic Control Council
Subjects
Online AccessGet full text
ISBN9780780383357
0780383354
ISSN0743-1619
DOI10.23919/ACC.2004.1384055

Cover

More Information
Summary:This paper examines the use of control allocation techniques for the control of multiple inputs to a ground vehicle to track a desired yaw rate trajectory while minimizing vehicle sideslip. The proposed controller uses quadratic programming accompanied by linear quadratic regulator gains designed around a linear vehicle model to arrive at a combination of vehicle commands. Several failure scenarios are examined and the results for two different quadratic programming approaches are presented along with a discussion of the advantages each method has to offer.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISBN:9780780383357
0780383354
ISSN:0743-1619
DOI:10.23919/ACC.2004.1384055