Convolutional Neural Networks for No-Reference Image Quality Assessment

In this work we describe a Convolutional Neural Network (CNN) to accurately predict image quality without a reference image. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1733 - 1740
Main Authors Le Kang, Peng Ye, Yi Li, Doermann, David
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2014.224

Cover

More Information
Summary:In this work we describe a Convolutional Neural Network (CNN) to accurately predict image quality without a reference image. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one convolutional layer with max and min pooling, two fully connected layers and an output node. Within the network structure, feature learning and regression are integrated into one optimization process, which leads to a more effective model for estimating image quality. This approach achieves state of the art performance on the LIVE dataset and shows excellent generalization ability in cross dataset experiments. Further experiments on images with local distortions demonstrate the local quality estimation ability of our CNN, which is rarely reported in previous literature.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2014.224