Real-time, propellant-optimized spacecraft motion planning under Clohessy-Wiltshire-Hill dynamics

This paper presents a sampling-based motion planning algorithm for real-time, propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively-a...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Aerospace Conference pp. 1 - 16
Main Authors Starek, Joseph A., Schmerling, Edward, Maher, Gabriel D., Barbee, Brent W., Pavone, Marco
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2016
Subjects
Online AccessGet full text
DOI10.1109/AERO.2016.7500704

Cover

Abstract This paper presents a sampling-based motion planning algorithm for real-time, propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively-actuated, propellant-optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill (CWH) dynamics model. The approach calls upon a modified version of the Fast Marching Tree (FMT*) algorithm to grow a set of feasible and actively-safe trajectories over a deterministic, low-dispersion set of sample points covering the free state space. Key features of the proposed algorithm include: (i) theoretical guarantees of trajectory safety and performance, (ii) real-time implementability, and (iii) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.
AbstractList This paper presents a sampling-based motion planning algorithm for real-time, propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively-actuated, propellant-optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill (CWH) dynamics model. The approach calls upon a modified version of the Fast Marching Tree (FMT*) algorithm to grow a set of feasible and actively-safe trajectories over a deterministic, low-dispersion set of sample points covering the free state space. Key features of the proposed algorithm include: (i) theoretical guarantees of trajectory safety and performance, (ii) real-time implementability, and (iii) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.
Author Starek, Joseph A.
Maher, Gabriel D.
Schmerling, Edward
Barbee, Brent W.
Pavone, Marco
Author_xml – sequence: 1
  givenname: Joseph A.
  surname: Starek
  fullname: Starek, Joseph A.
  email: jstarek@stanford.edu
  organization: Aeronaut. & Astronaut, Stanford Univ., Stanford, CA, USA
– sequence: 2
  givenname: Edward
  surname: Schmerling
  fullname: Schmerling, Edward
  email: schmrlng@stanford.edu
  organization: Inst. for Comput. & Math. Eng., Stanford Univ., Stanford, CA, USA
– sequence: 3
  givenname: Gabriel D.
  surname: Maher
  fullname: Maher, Gabriel D.
  email: gdmaher@stanford.edu
  organization: Inst. for Comput. & Math. Eng., Stanford Univ., Stanford, CA, USA
– sequence: 4
  givenname: Brent W.
  surname: Barbee
  fullname: Barbee, Brent W.
  email: brent.w.barbee@nasa.gov
  organization: NASA Goddard Space Flight Center, NASA, Greenbelt, MD, USA
– sequence: 5
  givenname: Marco
  surname: Pavone
  fullname: Pavone, Marco
  email: pavone@stanford.edu
  organization: Aeronaut. & Astronaut, Stanford Univ., Stanford, CA, USA
BookMark eNotj9FKwzAYhSPohZs-gHiTBzD1T9K0zeUo0w0Gg6F4OdLkrwukaWnqRX16C-7qwOHj8J0VuY19REKeOGScg37dbE_HTAAvslIBlJDfkBXPi1KWRVnAPTEnNIFNvsMXOoz9gCGYOLF-WCr_i46mwVi0o2kn2vWT7yMdFiL6-E1_osOR1qG_YEoz-_JhShc_Itv5EKibo-m8TQ_krjUh4eM11-TzbftR79jh-L6vNwfmBVQTKxotlKxaC1yDyKGRWimrnW5FYZzTnBuFVjqVYyMBGptDLqyp7KLHGyXkmjz_73pEPA-j78w4n6-v5R9r-VMm
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AERO.2016.7500704
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467376760
9781467376761
EndPage 16
ExternalDocumentID 7500704
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i208t-6b92538fc0190240b3955c9d9f26add911a5ec3d54eb300bc4042ca8cace1b523
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:15 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-6b92538fc0190240b3955c9d9f26add911a5ec3d54eb300bc4042ca8cace1b523
PageCount 16
ParticipantIDs ieee_primary_7500704
PublicationCentury 2000
PublicationDate 20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 20160301
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE Aerospace Conference
PublicationTitleAbbrev AERO
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.09209
Snippet This paper presents a sampling-based motion planning algorithm for real-time, propellant-optimized autonomous spacecraft trajectory generation in near-circular...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Heuristic algorithms
Orbits
Planning
Propulsion
Real-time systems
Space vehicles
Trajectory
Title Real-time, propellant-optimized spacecraft motion planning under Clohessy-Wiltshire-Hill dynamics
URI https://ieeexplore.ieee.org/document/7500704
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LawIxEA7qqae2aOmbHHo06z6SdXMsokjBtkgFb5Inldpd0Xiov76T3a2lpYfewhLYkEm-LzOZyYfQXUQZFZZSYpjihDIhYc-BzwOehoL1knBbxiEnj-l4Rh_mbN5A3UMtjDGmTD4zgW-Wd_m6UDsfKusBu8EKpU3U7Pd5VatVX1RGIe_dD6dPPlcrDep-PwRTSr4YHaPJ15-qNJG3YOdkoPa_HmH871BOUOe7Mg8_HzjnFDVM3kZiCqc94lXiu3jtg-tg2tyRAtDgfbk3GgNqKDgeCutwpdqD17VWEfY1ZBs8WBWvAHkfPn3WlfFqMl6uVlhXevXbDpqNhi-DMamlE8gyDjNHUsljgDKrfKk4kLZMOANjaG7jFBANEE4woxLNKDjTYSgVhc2rRKZgOJEE5_QMtfIiN-cIZ5KbmEmbylQDk-nMJJGxsQQgiDNh-AVq--lZrKvXMRb1zFz-_fkKHXkTVVlc16jlNjtzA7Tu5G1pz083YaYn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHOvajnevREMhUQEMg4UbWrotE3AiOg_z1vm4To_HgrVmarOlrv6_v9b1-ADcO4yxKGKOaK0EZjyTuOfR50NNQuF48kRRxyMHQDyfsYcqnNWhta2G01kXymbZMs7jLjzO1NqGyNrIbrlC2A7scvYrbslqruqp0bNG-646eTLaWb1U9f0imFIzRO4DB17_KRJFXa51LS21-PcP438EcQvO7No88b1nnCGo6bUA0wvMeNTrxLbI04XU0bprTDPHgbb7RMUHcUHhAjJKclLo9ZFmpFRFTRbYinUX2gqD3YRJo8yJiTcP5YkHiUrH-vQmTXnfcCWklnkDnrh3k1JfCRTBLlCkWR9qWnuBojlgkro-YhhgXca28mDN0p21bKobbV0WBwuE4Et3TY6inWapPgARSaJfLxJd-jFwWB9pzdOJKhAI3iLQ4hYaZntmyfB9jVs3M2d-fr2EvHA_6s_798PEc9o25ypyuC6jnq7W-RJLP5VVh208c5ql4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Aerospace+Conference&rft.atitle=Real-time%2C+propellant-optimized+spacecraft+motion+planning+under+Clohessy-Wiltshire-Hill+dynamics&rft.au=Starek%2C+Joseph+A.&rft.au=Schmerling%2C+Edward&rft.au=Maher%2C+Gabriel+D.&rft.au=Barbee%2C+Brent+W.&rft.date=2016-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FAERO.2016.7500704&rft.externalDocID=7500704