Real-time, propellant-optimized spacecraft motion planning under Clohessy-Wiltshire-Hill dynamics
This paper presents a sampling-based motion planning algorithm for real-time, propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively-a...
Saved in:
Published in | 2016 IEEE Aerospace Conference pp. 1 - 16 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/AERO.2016.7500704 |
Cover
Summary: | This paper presents a sampling-based motion planning algorithm for real-time, propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively-actuated, propellant-optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill (CWH) dynamics model. The approach calls upon a modified version of the Fast Marching Tree (FMT*) algorithm to grow a set of feasible and actively-safe trajectories over a deterministic, low-dispersion set of sample points covering the free state space. Key features of the proposed algorithm include: (i) theoretical guarantees of trajectory safety and performance, (ii) real-time implementability, and (iii) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions. |
---|---|
DOI: | 10.1109/AERO.2016.7500704 |