Can Large Language Models Provide Feedback to Students? A Case Study on ChatGPT

Educational feedback has been widely acknowledged as an effective approach to improving student learning. However, scaling effective practices can be laborious and costly, which motivated researchers to work on automated feedback systems (AFS). Inspired by the recent advancements in the pre-trained...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Conference on Advanced Learning Technologies) pp. 323 - 325
Main Authors Dai, Wei, Lin, Jionghao, Jin, Hua, Li, Tongguang, Tsai, Yi-Shan, Gasevic, Dragan, Chen, Guanliang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2023
Subjects
Online AccessGet full text
ISSN2161-377X
DOI10.1109/ICALT58122.2023.00100

Cover

More Information
Summary:Educational feedback has been widely acknowledged as an effective approach to improving student learning. However, scaling effective practices can be laborious and costly, which motivated researchers to work on automated feedback systems (AFS). Inspired by the recent advancements in the pre-trained language models (e.g., ChatGPT), we posit that such models might advance the existing knowledge of textual feedback generation in AFS because of their capability to offer natural-sounding and detailed responses. Therefore, we aimed to investigate the feasibility of using ChatGPT to provide students with feedback to help them learn better. Our results show that i) ChatGPT is capable of generating more detailed feedback that fluently and coherently summarizes students' performance than human instructors; ii) ChatGPT achieved high agreement with the instructor when assessing the topic of students' assignments; and iii) ChatGPT could provide feedback on the process of students completing the task, which might benefit students developing learning skills.
ISSN:2161-377X
DOI:10.1109/ICALT58122.2023.00100