Multi-car paint shop optimization with quantum annealing

We present a generalization of the binary paint shop problem (BPSP) to tackle an automotive industry application, the multi-car paint shop (MCPS) problem. The objective of the optimization is to minimize the number of color switches between cars in a paint shop queue during manufacturing, a known NP...

Full description

Saved in:
Bibliographic Details
Published in2021 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 35 - 41
Main Authors Yarkoni, Sheir, Alekseyenko, Alex, Streif, Michael, Von Dollen, David, Neukart, Florian, Back, Thomas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2021
Subjects
Online AccessGet full text
DOI10.1109/QCE52317.2021.00019

Cover

Abstract We present a generalization of the binary paint shop problem (BPSP) to tackle an automotive industry application, the multi-car paint shop (MCPS) problem. The objective of the optimization is to minimize the number of color switches between cars in a paint shop queue during manufacturing, a known NP-hard problem. We distinguish between different sub-classes of paint shop problems, and show how to formulate the basic MCPS problem as an Ising model. The problem instances used in this study are generated using real-world data from a factory in Wolfsburg, Germany. We compare the performance of the D-Wave 2000Q and Advantage quantum processors to other classical solvers and a hybrid quantum-classical algorithm offered by D-Wave Systems. We observe that the quantum processors are well-suited for smaller problems, and the hybrid algorithm for intermediate sizes. However, we find that the performance of these algorithms quickly approaches that of a simple greedy algorithm in the large size limit.
AbstractList We present a generalization of the binary paint shop problem (BPSP) to tackle an automotive industry application, the multi-car paint shop (MCPS) problem. The objective of the optimization is to minimize the number of color switches between cars in a paint shop queue during manufacturing, a known NP-hard problem. We distinguish between different sub-classes of paint shop problems, and show how to formulate the basic MCPS problem as an Ising model. The problem instances used in this study are generated using real-world data from a factory in Wolfsburg, Germany. We compare the performance of the D-Wave 2000Q and Advantage quantum processors to other classical solvers and a hybrid quantum-classical algorithm offered by D-Wave Systems. We observe that the quantum processors are well-suited for smaller problems, and the hybrid algorithm for intermediate sizes. However, we find that the performance of these algorithms quickly approaches that of a simple greedy algorithm in the large size limit.
Author Neukart, Florian
Yarkoni, Sheir
Streif, Michael
Back, Thomas
Alekseyenko, Alex
Von Dollen, David
Author_xml – sequence: 1
  givenname: Sheir
  surname: Yarkoni
  fullname: Yarkoni, Sheir
  organization: Volkswagen Data:Lab Munich,Germany
– sequence: 2
  givenname: Alex
  surname: Alekseyenko
  fullname: Alekseyenko, Alex
  organization: Volkswagen Group of America,San Francisco,CA,USA
– sequence: 3
  givenname: Michael
  surname: Streif
  fullname: Streif, Michael
  organization: Volkswagen Data:Lab Munich,Germany
– sequence: 4
  givenname: David
  surname: Von Dollen
  fullname: Von Dollen, David
  organization: Leiden University,LIACS,Leiden,The Netherlands
– sequence: 5
  givenname: Florian
  surname: Neukart
  fullname: Neukart, Florian
  organization: Volkswagen Data:Lab Munich,Germany
– sequence: 6
  givenname: Thomas
  surname: Back
  fullname: Back, Thomas
  organization: Leiden University,LIACS,Leiden,The Netherlands
BookMark eNotzL1OwzAQAGAjwQBtn6CLXyDhzhfb9Yii8iO1Qkhlri61Qy0lTkgdIXh6Bpi-7bsT12lIQYg1QokI7v6t3mpFaEsFCksAQHclVs5u0BhdoXFob8VmP3c5Fiee5MgxZXk5D6Mcxhz7-MM5Dkl-xXyWnzOnPPeSUwrcxfSxFDctd5ew-nch3h-3h_q52L0-vdQPuyIqoFwo5xuyiqH1rW1BtVUA7y16q5xjOrHXTWVDQ56CqgxXlnQw2ARwwMppWoj13xtDCMdxij1P30dnQJMm-gUOxUS8
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QCE52317.2021.00019
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665416917
1665416912
EndPage 41
ExternalDocumentID 9605353
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-29db372a0fdf7f02f4e0dd71d7299a3cad5b47eb3d3e246a4735e61be090a2953
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:56 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-29db372a0fdf7f02f4e0dd71d7299a3cad5b47eb3d3e246a4735e61be090a2953
PageCount 7
ParticipantIDs ieee_primary_9605353
PublicationCentury 2000
PublicationDate 2021-Oct.
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct.
PublicationDecade 2020
PublicationTitle 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
PublicationTitleAbbrev QCE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0644367
Snippet We present a generalization of the binary paint shop problem (BPSP) to tackle an automotive industry application, the multi-car paint shop (MCPS) problem. The...
SourceID ieee
SourceType Publisher
StartPage 35
SubjectTerms Greedy algorithms
Image color analysis
NP-hard problem
optimization
Production facilities
Program processors
quantum annealing
Quantum computing
sequencing
Simulated annealing
Title Multi-car paint shop optimization with quantum annealing
URI https://ieeexplore.ieee.org/document/9605353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NNs_N7rm0FKGiYKG3kmyyKNLdWncv_nonu2tF8eAthECSSZiZL5lvBqGbRKdO2SwhHgAQkTbVBJAtI07x1MCd0rQp97a4j-dLebdSqx663XNhvPdN8JmPQrP5y3dlVoensjF420oo0Ud9ncQtV6tLJMRoOn6cTAFVMQ2gj7OocV5-lExpLMbsEC2-5moDRV6jurJR9vErDeN_F3OERt_cPPywtzrHqOeLIUoaHi3JzA5vAepX-P253OIS1MGm41ni8OCK32oQZL3BBrSrCUT0EVrOpk-TOelqIpAXTkVFeOqs0NzQ3OU6pzyXnjqnmQMnGYSbGZC81ICQnfBcxiZUFvYxs56m1PBUiRM0KMrCnyIsAAkxnRkeUB6LrYVhTsYyF9xrr8wZGoZdr7dt2ot1t-Hzv7sv0EGQexvndokG1a72V2CvK3vdHNQnZrGWWg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXi0y_a1Zc8EggpEE0i4kXbbjcbAIu5e_PVOd1eMxoO3pmnSdqbpzNfON4PQTVfFVpqkSxwAICJMrAggW0qsZLGGM6XCstzbeBINZ-J-LucNdLvlwjjnyuAzF_hm-Zdvs6TwT2Ud8LYll3wH7UohhKzYWnUqIRrGnadeH3AVVQD7GA1K9-VH0ZTSZgwO0PhrtipU5DUochMkH78SMf53OYeo_c3Ow49bu3OEGm7VQt2SSUsSvcFrAPs5fn_O1jiDC2FZMy2xf3LFbwWIslhiDfer9lT0NpoN-tPekNRVEcgLC3lOWGwNV0yHqU1VGrJUuNBaRS24ySDeRIPshQKMbLljItK-trCLqHFhHGoWS36Mmqts5U4Q5oCFqEo08ziPRsbAMCsikXLmlJP6FLX8rhfrKvHFot7w2d_d12hvOB2PFqO7ycM52vc6qKLeLlAz3xTuEqx3bq5KpX0Cd_eZpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Conference+on+Quantum+Computing+and+Engineering+%28QCE%29&rft.atitle=Multi-car+paint+shop+optimization+with+quantum+annealing&rft.au=Yarkoni%2C+Sheir&rft.au=Alekseyenko%2C+Alex&rft.au=Streif%2C+Michael&rft.au=Von+Dollen%2C+David&rft.date=2021-10-01&rft.pub=IEEE&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1109%2FQCE52317.2021.00019&rft.externalDocID=9605353