A Generic Modulo- (2^\pm\delta) Addition Algorithm via Two-Valued Digit Encoding

Modular adders are essential arithmetic components in Residue Number System (RNS)-based applications, including digital signal processing, cryptography, and machine learning. These applications consistently push the boundaries of dynamic range (DR) and operating frequency, making the design of effic...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Symposium on Computer Arithmetic pp. 85 - 92
Main Authors Gorgin, Saeid, Sadr, Amirhossein, Rahmati, Dara, Kim, Jungrae
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.05.2025
Subjects
Online AccessGet full text
ISSN2576-2265
DOI10.1109/ARITH64983.2025.00023

Cover

Abstract Modular adders are essential arithmetic components in Residue Number System (RNS)-based applications, including digital signal processing, cryptography, and machine learning. These applications consistently push the boundaries of dynamic range (DR) and operating frequency, making the design of efficient generic modular adders a critical and evolving challenge. This paper presents a novel algorithm for modulo -(2^{n}\pm \delta) addition, where \delta is an integer within the range 0\leq\delta\leq 2^{n-1}-1 . The proposed approach leverages a two-valued digit (twit) for encoding the value of \pm\delta and uses a faithful representation of operands. In this representation, each operand is encoded as an n-bit unsigned number augmented by a twit value \{0,\pm\delta\} . The algorithm efficiently performs modular addition by speculating and adjusting the twit value in the addition result. When the result exceeds the modulus, it subtracts \mathrm{z}^{n}\pm\delta by ignoring the carry-out and adjusting the speculated twit value. This adjustment is achieved through an XOR operation between the carry-out and the speculated twit value, simplifying the modular reduction process. The proposed design has been synthesized for practical n (4\leq n\leq 16 using a FreePDK 45 nm process. The results demonstrate superior performance across key metrics such as delay, area, and power consumption compared to previous designs, highlighting the efficacy and scalability of the approach.
AbstractList Modular adders are essential arithmetic components in Residue Number System (RNS)-based applications, including digital signal processing, cryptography, and machine learning. These applications consistently push the boundaries of dynamic range (DR) and operating frequency, making the design of efficient generic modular adders a critical and evolving challenge. This paper presents a novel algorithm for modulo -(2^{n}\pm \delta) addition, where \delta is an integer within the range 0\leq\delta\leq 2^{n-1}-1 . The proposed approach leverages a two-valued digit (twit) for encoding the value of \pm\delta and uses a faithful representation of operands. In this representation, each operand is encoded as an n-bit unsigned number augmented by a twit value \{0,\pm\delta\} . The algorithm efficiently performs modular addition by speculating and adjusting the twit value in the addition result. When the result exceeds the modulus, it subtracts \mathrm{z}^{n}\pm\delta by ignoring the carry-out and adjusting the speculated twit value. This adjustment is achieved through an XOR operation between the carry-out and the speculated twit value, simplifying the modular reduction process. The proposed design has been synthesized for practical n (4\leq n\leq 16 using a FreePDK 45 nm process. The results demonstrate superior performance across key metrics such as delay, area, and power consumption compared to previous designs, highlighting the efficacy and scalability of the approach.
Author Rahmati, Dara
Sadr, Amirhossein
Gorgin, Saeid
Kim, Jungrae
Author_xml – sequence: 1
  givenname: Saeid
  surname: Gorgin
  fullname: Gorgin, Saeid
  email: me@sgorgin.com
  organization: Sungkyunkwan University,Department of Electrical and Computer Engineering,Republic of Korea
– sequence: 2
  givenname: Amirhossein
  surname: Sadr
  fullname: Sadr, Amirhossein
  email: a.sadr@ipm.ir
  organization: School of Computer Science, Institute for Research in Fundamental Sciences (IPM),Tehran,Iran
– sequence: 3
  givenname: Dara
  surname: Rahmati
  fullname: Rahmati, Dara
  email: d_rahmati@sbu.ac.ir
  organization: Shahid Beheshti University,Department of Computer Science and Engineering,Tehran,Iran
– sequence: 4
  givenname: Jungrae
  surname: Kim
  fullname: Kim, Jungrae
  email: dale40@skku.edu
  organization: Sungkyunkwan University,Department of Electrical and Computer Engineering,Republic of Korea
BookMark eNotkEFLwzAYQKMouM39A4Uc9dD6JWmS5ljm3AYTRaqn4UiTtEa6ZLSd4r93oKcH7_AOb4zOQgwOoWsCKSGg7oqXVbkUmcpZSoHyFAAoO0FTJY-KEU4JV_QUjSiXIqFU8As07vtPAKKUkCP0XOCFC67zBj9Ge2hjgm_o-2a_21jXDvoWF9b6wceAi7aJnR8-dvjLa1x-x-RNtwdn8b1v_IDnwUTrQ3OJzmvd9m76zwl6fZiXs2WyflqsZsU68UTmQ5IzkFmWa6ZBVloQw501livDM1lxUYPjICrHTc6sUloTKiVjRhhOMlC1YRN09df1zrntvvM73f1sj09YTghjv4voUF4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ARITH64983.2025.00023
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331521592
EISSN 2576-2265
EndPage 92
ExternalDocumentID 11038113
Genre orig-research
GrantInformation_xml – fundername: IITP
  funderid: 10.13039/501100010418
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i178t-8307448a3a07ba61c5edcd59c547b56f0e506be5c83d99aa127733c6c51409fc3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:38:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-8307448a3a07ba61c5edcd59c547b56f0e506be5c83d99aa127733c6c51409fc3
PageCount 8
ParticipantIDs ieee_primary_11038113
PublicationCentury 2000
PublicationDate 2025-May-4
PublicationDateYYYYMMDD 2025-05-04
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-4
  day: 04
PublicationDecade 2020
PublicationTitle Proceedings - Symposium on Computer Arithmetic
PublicationTitleAbbrev ARITH
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019967
Score 2.2929091
Snippet Modular adders are essential arithmetic components in Residue Number System (RNS)-based applications, including digital signal processing, cryptography, and...
SourceID ieee
SourceType Publisher
StartPage 85
SubjectTerms Adders
Digital signal processing
Dynamic range
Encoding
Generic adder
Heuristic algorithms
Machine learning
Machine learning algorithms
Modular addition
Power demand
Residue Number System (RNS)
Scalability
Signal processing algorithms
Two-Valued Digit (Twit)
Title A Generic Modulo- (2^\pm\delta) Addition Algorithm via Two-Valued Digit Encoding
URI https://ieeexplore.ieee.org/document/11038113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7ak6e6VNzJwYMe0iaZZDJzLFqpgiLSigexZHlTB9tOKTMK_non00URBG8hl4QXkpe3fN-H0CmXPGGGSUIFABFaBkQzR4miXAPzJEvO451v78JuX9w8yacFWL3CwgBA1XwGTT-savkus4VPlbWYZ_NmXqN2XUXhHKy1KhmUH3e1gOgwGrfaD9e9bijiKCiDQO4TJ9RLEv2QUKk8yFUd3S3XnjeOvDWL3DTt5y9axn9vbhM1vsF6-H7lhrbQGky2UX2p1oAXl3cH3bdxxTGdWnybuWKUEXzGX56n42cHo1yf47ZzVf8Wbo-G2SzNX8f4PdW495GRRz0qwOHLdJjmuDOxmV-qgfpXnd5Flyz0FEjKVJSTqLzPZTSmA02V0SGzEpx1MrZSKCPDhIKkoQFpo8DFsdaMKxUENrTSs2IlNthFtUk2gT2EjRGBVTwRccIEJCbmNNSR5daY8sWCaB81vIUG0zllxmBpnIM_5g_Rhj-lqpNQHKFaPivguPT2uTmpTvkLKRaoTQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA6iBz25VdzNwYMeUpNMMsuxaEurthSp4kEsWd7UwbZTyoyCv97JtFURBG8hl4QXkpe3fN-H0CmXPGaaSUIFABFKekQxS0lAuQLmSJaswzu3O37zXlw_ysc5WL3EwgBA2XwGVTcsa_k2NblLlV0wx-bNnEbtihRCyBlc66toUHzdgzlIh9HoonbX6jV9EYVeEQZylzqhTpToh4hK6UMa66izWH3WOvJazTNdNR-_iBn_vb0NVPmG6-HulyPaREsw3kLrC70GPL--26hbwyXLdGJwO7X5MCX4jD8_TUZPFoaZOsc1a8sOLlwbDtJpkr2M8FuicO89JQ9qmIPFV8kgyXB9bFK3VAXdN-q9yyaZKyqQhAVhRsLiRhfxmPIUDbTymZFgjZWRkSLQ0o8pSOprkCb0bBQpxXgQeJ7xjXS8WLHxdtDyOB3DLsJaC88EPBZRzATEOuLUV6HhRuvizYJwD1WchfqTGWlGf2Gc_T_mT9Bqs9e-7d-2OjcHaM2dWNlXKA7RcjbN4ajw_Zk-Lk_8EypWq5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Symposium+on+Computer+Arithmetic&rft.atitle=A+Generic+Modulo-+%282%5E%5Cpm%5Cdelta%29+Addition+Algorithm+via+Two-Valued+Digit+Encoding&rft.au=Gorgin%2C+Saeid&rft.au=Sadr%2C+Amirhossein&rft.au=Rahmati%2C+Dara&rft.au=Kim%2C+Jungrae&rft.date=2025-05-04&rft.pub=IEEE&rft.eissn=2576-2265&rft.spage=85&rft.epage=92&rft_id=info:doi/10.1109%2FARITH64983.2025.00023&rft.externalDocID=11038113