Robust Monocular Epipolar Flow Estimation

We consider the problem of computing optical flow in monocular video taken from a moving vehicle. In this setting, the vast majority of image flow is due to the vehicle's ego-motion. We propose to take advantage of this fact and estimate flow along the epipolar lines of the egomotion. Towards t...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 1862 - 1869
Main Authors Yamaguchi, Koichiro, McAllester, David, Urtasun, Raquel
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2013.243

Cover

More Information
Summary:We consider the problem of computing optical flow in monocular video taken from a moving vehicle. In this setting, the vast majority of image flow is due to the vehicle's ego-motion. We propose to take advantage of this fact and estimate flow along the epipolar lines of the egomotion. Towards this goal, we derive a slanted-plane MRF model which explicitly reasons about the ordering of planes and their physical validity at junctions. Furthermore, we present a bottom-up grouping algorithm which produces over-segmentations that respect flow boundaries. We demonstrate the effectiveness of our approach in the challenging KITTI flow benchmark [11] achieving half the error of the best competing general flow algorithm and one third of the error of the best epipolar flow algorithm.
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2013.243