How Far From a Worst Solution a Random Solution of a $$k\,$$ CSP Instance Can Be?

Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio $$\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Algorithms pp. 374 - 386
Main Authors Culus, Jean-François, Toulouse, Sophie
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 04.07.2018
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319946665
3319946668
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-319-94667-2_31

Cover

More Information
Summary:Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio $$\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I))/(\mathrm {opt}(I) -\mathrm {wor}(I))$$ where $$\mathrm {opt}(I)$$ , $$\mathrm {wor}(I)$$ and $$\mathrm {E}_X[v(I, X)]$$ refer to respectively the optimal, the worst, and the average solution values on I. We here focus on the case when the variables have a domain of size $$q \ge 2$$ and the constraint arity is at most $$k \ge 2$$ , where k, q are two constant integers. Connecting this ratio to the highest frequency in orthogonal arrays with specified parameters, we prove that it is $$\varOmega (1/n^{k/2})$$ if $$q =2$$ , $$\varOmega (1/n^{k -1 -\lfloor \log _{p^\kappa } (k -1)\rfloor })$$ where $$p^\kappa $$ is the smallest prime power such that $$p^\kappa \ge q$$ otherwise, and $$\varOmega (1/q^k)$$ in $$(\max \{q, k\} +1\})$$ -partite instances.
Bibliography:Original Abstract: Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I))/(\mathrm {opt}(I) -\mathrm {wor}(I))$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {opt}(I)$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {wor}(I)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {E}_X[v(I, X)]$$\end{document} refer to respectively the optimal, the worst, and the average solution values on I. We here focus on the case when the variables have a domain of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \ge 2$$\end{document} and the constraint arity is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}, where k, q are two constant integers. Connecting this ratio to the highest frequency in orthogonal arrays with specified parameters, we prove that it is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (1/n^{k/2})$$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q =2$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (1/n^{k -1 -\lfloor \log _{p^\kappa } (k -1)\rfloor })$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^\kappa $$\end{document} is the smallest prime power such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^\kappa \ge q$$\end{document} otherwise, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (1/q^k)$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\max \{q, k\} +1\})$$\end{document}-partite instances.
Original Title: How Far From a Worst Solution a Random Solution of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\,$$\end{document}CSP Instance Can Be?
ISBN:9783319946665
3319946668
ISSN:0302-9743
1611-3349
1611-3349
DOI:10.1007/978-3-319-94667-2_31