How Far From a Worst Solution a Random Solution of a $$k\,$$ CSP Instance Can Be?
Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio $$\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I...
        Saved in:
      
    
          | Published in | Combinatorial Algorithms pp. 374 - 386 | 
|---|---|
| Main Authors | , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        04.07.2018
     | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783319946665 3319946668  | 
| ISSN | 0302-9743 1611-3349 1611-3349  | 
| DOI | 10.1007/978-3-319-94667-2_31 | 
Cover
| Summary: | Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio $$\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I))/(\mathrm {opt}(I) -\mathrm {wor}(I))$$ where $$\mathrm {opt}(I)$$ , $$\mathrm {wor}(I)$$ and $$\mathrm {E}_X[v(I, X)]$$ refer to respectively the optimal, the worst, and the average solution values on I. We here focus on the case when the variables have a domain of size $$q \ge 2$$ and the constraint arity is at most $$k \ge 2$$ , where k, q are two constant integers. Connecting this ratio to the highest frequency in orthogonal arrays with specified parameters, we prove that it is $$\varOmega (1/n^{k/2})$$ if $$q =2$$ , $$\varOmega (1/n^{k -1 -\lfloor \log _{p^\kappa } (k -1)\rfloor })$$ where $$p^\kappa $$ is the smallest prime power such that $$p^\kappa \ge q$$ otherwise, and $$\varOmega (1/q^k)$$ in $$(\max \{q, k\} +1\})$$ -partite instances. | 
|---|---|
| Bibliography: | Original Abstract: Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I))/(\mathrm {opt}(I) -\mathrm {wor}(I))$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {opt}(I)$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {wor}(I)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {E}_X[v(I, X)]$$\end{document} refer to respectively the optimal, the worst, and the average solution values on I. We here focus on the case when the variables have a domain of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \ge 2$$\end{document} and the constraint arity is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}, where k, q are two constant integers. Connecting this ratio to the highest frequency in orthogonal arrays with specified parameters, we prove that it is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (1/n^{k/2})$$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q =2$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (1/n^{k -1 -\lfloor \log _{p^\kappa } (k -1)\rfloor })$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^\kappa $$\end{document} is the smallest prime power such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^\kappa \ge q$$\end{document} otherwise, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (1/q^k)$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\max \{q, k\} +1\})$$\end{document}-partite instances. Original Title: How Far From a Worst Solution a Random Solution of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\,$$\end{document}CSP Instance Can Be?  | 
| ISBN: | 9783319946665 3319946668  | 
| ISSN: | 0302-9743 1611-3349 1611-3349  | 
| DOI: | 10.1007/978-3-319-94667-2_31 |