Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata

In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e.,...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science pp. 316 - 327
Main Authors Fatés, Nazim, Morvan, Michel, Schabanel, Nicolas, Thierry, Éric
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783540287025
3540287027
ISSN0302-9743
1611-3349
DOI10.1007/11549345_28

Cover

Abstract In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1). It has been experimentally shown in previous works that introducing asynchronism in the global function of a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work exist on the subject. The cellular automata we consider live on a ring of size n and asynchronism is introduced as follows: at each time step one cell is selected uniformly at random and the transition rule is applied to this cell while the others remain unchanged. Among the sixty-four cellular automata belonging to the class we consider, we show that fifty-five other converge almost surely to a random fixed point while nine of them diverge on all non-trivial configurations. We show that the convergence time of these fifty-five automata can only take the following values: either 0, Θ(n ln n), Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of these cellular automata can be guessed by simply reading its code.
AbstractList In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1). It has been experimentally shown in previous works that introducing asynchronism in the global function of a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work exist on the subject. The cellular automata we consider live on a ring of size n and asynchronism is introduced as follows: at each time step one cell is selected uniformly at random and the transition rule is applied to this cell while the others remain unchanged. Among the sixty-four cellular automata belonging to the class we consider, we show that fifty-five other converge almost surely to a random fixed point while nine of them diverge on all non-trivial configurations. We show that the convergence time of these fifty-five automata can only take the following values: either 0, Θ(n ln n), Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of these cellular automata can be guessed by simply reading its code.
Author Morvan, Michel
Schabanel, Nicolas
Fatés, Nazim
Thierry, Éric
Author_xml – sequence: 1
  givenname: Nazim
  surname: Fatés
  fullname: Fatés, Nazim
  email: Nazim.Fates@ens-lyon.fr
  organization: ENS Lyon – LIP (UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668), Lyon Cedex 07, France
– sequence: 2
  givenname: Michel
  surname: Morvan
  fullname: Morvan, Michel
  email: Michel.Morvan@ens-lyon.fr
  organization: Institut universitaire de France, École des hautes études en sciences sociales and Santa Fe Insitute,  
– sequence: 3
  givenname: Nicolas
  surname: Schabanel
  fullname: Schabanel, Nicolas
  email: Nicolas.Schabanel@ens-lyon.fr
  organization: ENS Lyon – LIP (UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668), Lyon Cedex 07, France
– sequence: 4
  givenname: Éric
  surname: Thierry
  fullname: Thierry, Éric
  email: Eric.Thierry@ens-lyon.fr
  organization: ENS Lyon – LIP (UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668), Lyon Cedex 07, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17096560$$DView record in Pascal Francis
BookMark eNpNUMtKAzEUjVrBWrvyB2bjwsXozTtZ1tqqUBBB1yFJM3Y0nZTJjNC_d6Qi3s25cB4czjkaNakJCF1iuMEA8hZjzjRl3BB1hKZaKsoZUKyE5MdojAXGJaVMn_xxREkgfITGQIGUWjJ6hqY5f8Bwg0-BGKPVso9xX8zyvvGbNjWpz8Vd2NivOrVFqor71LsYype-DtmHpisWMWwHtO2-mIcY-2jbYtZ3aWs7e4FOKxtzmP7iBL0tF6_zx3L1_PA0n63KDeG0K72oHAGlhSPWScuJV0IzKbQOjrP1mui18tRhwjFoAtoNL-aeY83BaSXpBF0dcnc2exur1ja-zmbX1tuhl8EStOACBt31QZcHqnkPrXEpfWaDwfwsav4tSr8BGiJjcA
ContentType Book Chapter
Conference Proceeding
Copyright Springer-Verlag Berlin Heidelberg 2005
2005 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2005
– notice: 2005 INIST-CNRS
DBID IQODW
DOI 10.1007/11549345_28
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISBN 9783540318675
3540318674
EISSN 1611-3349
Editor Jȩdrzejowicz, Joanna
Szepietowski, Andrzej
Editor_xml – sequence: 1
  givenname: Joanna
  surname: Jȩdrzejowicz
  fullname: Jȩdrzejowicz, Joanna
  email: Joanna.Jedrzejowicz@math.univ.gda.pl
– sequence: 2
  givenname: Andrzej
  surname: Szepietowski
  fullname: Szepietowski, Andrzej
  email: matszp@math.univ.gda.pl
EndPage 327
ExternalDocumentID 17096560
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
IQODW
RIG
ID FETCH-LOGICAL-h253t-c6fb20896b2ab7a52c86947699eb54dd29d8c3b125109209bb1215c51950b9873
ISBN 9783540287025
3540287027
ISSN 0302-9743
IngestDate Fri Jan 17 03:47:26 EST 2025
Wed Sep 17 02:13:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Continuous process
Cellular automaton
Fix point
Probabilistic approach
Asynchronism
Computer theory
Continuous time
Finite automaton
Modeling
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName MFCS 2005 : mathematical foundations of computer science (Gdansk, 29 August - 2 September 2005)
MergedId FETCHMERGED-LOGICAL-h253t-c6fb20896b2ab7a52c86947699eb54dd29d8c3b125109209bb1215c51950b9873
PageCount 12
ParticipantIDs pascalfrancis_primary_17096560
springer_books_10_1007_11549345_28
PublicationCentury 2000
PublicationDate 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 30th International Symposium, MFCS 2005, Gdansk, Poland, August 29–September 2, 2005. Proceedings
PublicationTitle Lecture notes in computer science
PublicationYear 2005
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Tygar, Dough
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, CA, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, MA, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: New York University, NY, USA
– sequence: 13
  givenname: Dough
  surname: Tygar
  fullname: Tygar, Dough
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany
SSID ssj0000318806
ssj0002792
Score 1.8119351
Snippet In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time...
SourceID pascalfrancis
springer
SourceType Index Database
Publisher
StartPage 316
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Cellular Automaton
Computer science; control theory; systems
Convergence Time
Exact sciences and technology
Probabilistic Cellular Automaton
Random Walk
Synchronous Dynamic
Theoretical computing
Title Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata
URI http://link.springer.com/10.1007/11549345_28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6clELpoW-aPsJSegsqklbS7h56CMUlBDdQcEpuRvsQMThSsOVD8nv6Qzuj3ZVlu5S2F2GEkdfzzc6O5vENIR-ZyKrCsCqKRakjsH5VBDaPRyax4GwbbQqFAf1vF8XZZXZ-lV-NRj8HVUvrVn3S97_tK_kfVOEe4Ipdsv-AbP9QuAGfAV-4AsJw3XF-t8OsfsJQIFwFKW-mI3WlGWFWQ791MarTQ1W2Lj2-cub1fn7Ti71Z-sSQKxHdpGmuS1XWLqPfKU_Z--JTnKbtkvH4WCGXcz1URHzJvQM1uKs1EvFiya0nZewSFODBq4WNvq_njljqZOwL2pdgrOxi0ZXJnq7b5sZ10bWdaO3q88RnPy6atisq2_vTWwGNfCegEQKaJ3_g-_LxKkzSurbp0AIG5h1ekJzFtM6iF8jTyBwvqrfSLCkGBz5z5AR7Z4krH0G6IsmyfJaKA3LAOVjRB6fj88mPPpKHZlFgrtqf_0jJ6HJXbjG-o6hbLH_YB9vc4n3LKHZzDn4JK3TLFahP5aar7KXpO-9n-pQ8xo4Yiq0qIN5nZGTr5-RJEDf14n5BJh3UdAg1DVDTpqK7UNMN1DRATQPUL8nl1_H0y1nkp3VE12nO2kgXlUpjIWFzl4qXeapFITNeSGlVnhmTSiM0U-hQxzKNpVJIbKKR3ShWUnD2ihzWTW1fE5qyXHFTMs2xe6kCBdcmy0ViE240N-KIHG-JZ3brmFlmCUcyoyI-Ih-CvGa4QVezwM49EPKbv_nSW_Joo6PvyGG7XNv34Ia26tjrwS-KMYHR
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Foundations+of+Computer+Science+2005&rft.au=Fat%C3%A9s%2C+Nazim&rft.au=Morvan%2C+Michel&rft.au=Schabanel%2C+Nicolas&rft.au=Thierry%2C+%C3%89ric&rft.atitle=Fully+Asynchronous+Behavior+of+Double-Quiescent+Elementary+Cellular+Automata&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540287025&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=316&rft.epage=327&rft_id=info:doi/10.1007%2F11549345_28
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon