Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata
In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e.,...
Saved in:
Published in | Lecture notes in computer science pp. 316 - 327 |
---|---|
Main Authors | , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783540287025 3540287027 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/11549345_28 |
Cover
Abstract | In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1). It has been experimentally shown in previous works that introducing asynchronism in the global function of a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work exist on the subject. The cellular automata we consider live on a ring of size n and asynchronism is introduced as follows: at each time step one cell is selected uniformly at random and the transition rule is applied to this cell while the others remain unchanged. Among the sixty-four cellular automata belonging to the class we consider, we show that fifty-five other converge almost surely to a random fixed point while nine of them diverge on all non-trivial configurations. We show that the convergence time of these fifty-five automata can only take the following values: either 0, Θ(n ln n), Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of these cellular automata can be guessed by simply reading its code. |
---|---|
AbstractList | In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1). It has been experimentally shown in previous works that introducing asynchronism in the global function of a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work exist on the subject. The cellular automata we consider live on a ring of size n and asynchronism is introduced as follows: at each time step one cell is selected uniformly at random and the transition rule is applied to this cell while the others remain unchanged. Among the sixty-four cellular automata belonging to the class we consider, we show that fifty-five other converge almost surely to a random fixed point while nine of them diverge on all non-trivial configurations. We show that the convergence time of these fifty-five automata can only take the following values: either 0, Θ(n ln n), Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of these cellular automata can be guessed by simply reading its code. |
Author | Morvan, Michel Schabanel, Nicolas Fatés, Nazim Thierry, Éric |
Author_xml | – sequence: 1 givenname: Nazim surname: Fatés fullname: Fatés, Nazim email: Nazim.Fates@ens-lyon.fr organization: ENS Lyon – LIP (UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668), Lyon Cedex 07, France – sequence: 2 givenname: Michel surname: Morvan fullname: Morvan, Michel email: Michel.Morvan@ens-lyon.fr organization: Institut universitaire de France, École des hautes études en sciences sociales and Santa Fe Insitute, – sequence: 3 givenname: Nicolas surname: Schabanel fullname: Schabanel, Nicolas email: Nicolas.Schabanel@ens-lyon.fr organization: ENS Lyon – LIP (UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668), Lyon Cedex 07, France – sequence: 4 givenname: Éric surname: Thierry fullname: Thierry, Éric email: Eric.Thierry@ens-lyon.fr organization: ENS Lyon – LIP (UMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668), Lyon Cedex 07, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17096560$$DView record in Pascal Francis |
BookMark | eNpNUMtKAzEUjVrBWrvyB2bjwsXozTtZ1tqqUBBB1yFJM3Y0nZTJjNC_d6Qi3s25cB4czjkaNakJCF1iuMEA8hZjzjRl3BB1hKZaKsoZUKyE5MdojAXGJaVMn_xxREkgfITGQIGUWjJ6hqY5f8Bwg0-BGKPVso9xX8zyvvGbNjWpz8Vd2NivOrVFqor71LsYype-DtmHpisWMWwHtO2-mIcY-2jbYtZ3aWs7e4FOKxtzmP7iBL0tF6_zx3L1_PA0n63KDeG0K72oHAGlhSPWScuJV0IzKbQOjrP1mui18tRhwjFoAtoNL-aeY83BaSXpBF0dcnc2exur1ja-zmbX1tuhl8EStOACBt31QZcHqnkPrXEpfWaDwfwsav4tSr8BGiJjcA |
ContentType | Book Chapter Conference Proceeding |
Copyright | Springer-Verlag Berlin Heidelberg 2005 2005 INIST-CNRS |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2005 – notice: 2005 INIST-CNRS |
DBID | IQODW |
DOI | 10.1007/11549345_28 |
DatabaseName | Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISBN | 9783540318675 3540318674 |
EISSN | 1611-3349 |
Editor | Jȩdrzejowicz, Joanna Szepietowski, Andrzej |
Editor_xml | – sequence: 1 givenname: Joanna surname: Jȩdrzejowicz fullname: Jȩdrzejowicz, Joanna email: Joanna.Jedrzejowicz@math.univ.gda.pl – sequence: 2 givenname: Andrzej surname: Szepietowski fullname: Szepietowski, Andrzej email: matszp@math.univ.gda.pl |
EndPage | 327 |
ExternalDocumentID | 17096560 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 IQODW RIG |
ID | FETCH-LOGICAL-h253t-c6fb20896b2ab7a52c86947699eb54dd29d8c3b125109209bb1215c51950b9873 |
ISBN | 9783540287025 3540287027 |
ISSN | 0302-9743 |
IngestDate | Fri Jan 17 03:47:26 EST 2025 Wed Sep 17 02:13:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Continuous process Cellular automaton Fix point Probabilistic approach Asynchronism Computer theory Continuous time Finite automaton Modeling |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | MFCS 2005 : mathematical foundations of computer science (Gdansk, 29 August - 2 September 2005) |
MergedId | FETCHMERGED-LOGICAL-h253t-c6fb20896b2ab7a52c86947699eb54dd29d8c3b125109209bb1215c51950b9873 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_17096560 springer_books_10_1007_11549345_28 |
PublicationCentury | 2000 |
PublicationDate | 2005 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005 |
PublicationDecade | 2000 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | 30th International Symposium, MFCS 2005, Gdansk, Poland, August 29–September 2, 2005. Proceedings |
PublicationTitle | Lecture notes in computer science |
PublicationYear | 2005 |
Publisher | Springer Berlin Heidelberg Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Tygar, Dough Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, CA, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, MA, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: New York University, NY, USA – sequence: 13 givenname: Dough surname: Tygar fullname: Tygar, Dough organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany |
SSID | ssj0000318806 ssj0002792 |
Score | 1.8119351 |
Snippet | In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time... |
SourceID | pascalfrancis springer |
SourceType | Index Database Publisher |
StartPage | 316 |
SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Cellular Automaton Computer science; control theory; systems Convergence Time Exact sciences and technology Probabilistic Cellular Automaton Random Walk Synchronous Dynamic Theoretical computing |
Title | Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata |
URI | http://link.springer.com/10.1007/11549345_28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6clELpoW-aPsJSegsqklbS7h56CMUlBDdQcEpuRvsQMThSsOVD8nv6Qzuj3ZVlu5S2F2GEkdfzzc6O5vENIR-ZyKrCsCqKRakjsH5VBDaPRyax4GwbbQqFAf1vF8XZZXZ-lV-NRj8HVUvrVn3S97_tK_kfVOEe4Ipdsv-AbP9QuAGfAV-4AsJw3XF-t8OsfsJQIFwFKW-mI3WlGWFWQ791MarTQ1W2Lj2-cub1fn7Ti71Z-sSQKxHdpGmuS1XWLqPfKU_Z--JTnKbtkvH4WCGXcz1URHzJvQM1uKs1EvFiya0nZewSFODBq4WNvq_njljqZOwL2pdgrOxi0ZXJnq7b5sZ10bWdaO3q88RnPy6atisq2_vTWwGNfCegEQKaJ3_g-_LxKkzSurbp0AIG5h1ekJzFtM6iF8jTyBwvqrfSLCkGBz5z5AR7Z4krH0G6IsmyfJaKA3LAOVjRB6fj88mPPpKHZlFgrtqf_0jJ6HJXbjG-o6hbLH_YB9vc4n3LKHZzDn4JK3TLFahP5aar7KXpO-9n-pQ8xo4Yiq0qIN5nZGTr5-RJEDf14n5BJh3UdAg1DVDTpqK7UNMN1DRATQPUL8nl1_H0y1nkp3VE12nO2kgXlUpjIWFzl4qXeapFITNeSGlVnhmTSiM0U-hQxzKNpVJIbKKR3ShWUnD2ihzWTW1fE5qyXHFTMs2xe6kCBdcmy0ViE240N-KIHG-JZ3brmFlmCUcyoyI-Ih-CvGa4QVezwM49EPKbv_nSW_Joo6PvyGG7XNv34Ia26tjrwS-KMYHR |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Foundations+of+Computer+Science+2005&rft.au=Fat%C3%A9s%2C+Nazim&rft.au=Morvan%2C+Michel&rft.au=Schabanel%2C+Nicolas&rft.au=Thierry%2C+%C3%89ric&rft.atitle=Fully+Asynchronous+Behavior+of+Double-Quiescent+Elementary+Cellular+Automata&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540287025&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=316&rft.epage=327&rft_id=info:doi/10.1007%2F11549345_28 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |