Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata
In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e.,...
Saved in:
Published in | Lecture notes in computer science pp. 316 - 327 |
---|---|
Main Authors | , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783540287025 3540287027 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/11549345_28 |
Cover
Summary: | In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1). It has been experimentally shown in previous works that introducing asynchronism in the global function of a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work exist on the subject. The cellular automata we consider live on a ring of size n and asynchronism is introduced as follows: at each time step one cell is selected uniformly at random and the transition rule is applied to this cell while the others remain unchanged. Among the sixty-four cellular automata belonging to the class we consider, we show that fifty-five other converge almost surely to a random fixed point while nine of them diverge on all non-trivial configurations. We show that the convergence time of these fifty-five automata can only take the following values: either 0, Θ(n ln n), Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of these cellular automata can be guessed by simply reading its code. |
---|---|
ISBN: | 9783540287025 3540287027 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11549345_28 |