Utilisation of artificial neural network for the analysis of interlayer shear properties/ Dirbtinio neuroninio tinklo naudojimas tarpsluoksniu slyties savyb?ms analizuoti/ Maksligo neiralo tiklu izmantosana starpslanu bides ipasibu analize/ Kunstlike narvivorkude kasutamine siduskihtide nihkeomaduste analuusil

For a long time artificial intelligence tools were not used in pavement engineering, but their application is becoming more and more important. As opposed to other subjects in pavement engineering this is not yet the case for interlayer bonding. The aim of this paper is to apply artificial intellige...

Full description

Saved in:
Bibliographic Details
Published inThe Baltic journal of road and bridge engineering Vol. 8; no. 2; p. 107
Main Authors Raab, Christiane, Halim, Abd El Halim Omar Abd El, Partl, Manfred Norbert
Format Journal Article
LanguageEnglish
Published Vilnius Gediminas Technical University 01.06.2013
Subjects
Online AccessGet full text
ISSN1822-427X
DOI10.3846/bjrbe.2013.14

Cover

More Information
Summary:For a long time artificial intelligence tools were not used in pavement engineering, but their application is becoming more and more important. As opposed to other subjects in pavement engineering this is not yet the case for interlayer bonding. The aim of this paper is to apply artificial intelligence in form of artificial neural network for knowledge discovery from pavement engineering data in the field of interlayer bonding. This means that the focus is on practical use of artificial neural network and its application for datasets on interlayer bonding in order to find pattern within the data and to predict certain interlayer bond properties. It was shown that artificial neural network techniques are suitable for deriving models from datasets and to predict interlayer shear bond properties such as max shear force, deformation at max shear stress, and max shear stiffness. Keywords: interlayer bond test devices, artificial neural network (ANN), asphalt pavements. Santrauka. Ilga laika dirbtinio intelekto priemones buvo nenaudojamos dangu inzinerijos srityje, taciau ju taikymas tampa vis svarbesnis. Priesingai kitiems dangu inzinerijos subjektams, kol kas jos nera naudojamos tarpsluoksniams jungti. Sio straipsnio tikslas--naudojant dirbtini neuronini tinkla pritaikyti dirbtinu intelekta dangu inzinerijos duomenims atskleisti tarpsluoksniu jungimo srityje. Tai reiskia, kad daugiausia demesio skiriama praktiniam dirbtiniu neuroniniu tinklu naudojimui ir ju taikymui tarpsluoksniu jungimo duomenims nustatyti, siekiant rasti siu duomenu modeli ir numatyti tam tikras tarpsluoksniu jungimo savybes. Parodyta, kad dirbtinio neuroninio tinklo naudojimo metodas yra tinkamas duomenu modeliui isvesti ir numatyti tarpsluoksniu jungimo slyties savybes, tokias kaip didziausia kirpimo jega, deformacija didziausio slyties itempio metu ir didziausias slyties standis. Reiksminiai zodziai: tarpsluoksniu jungimo tyrimo prietaisai, dirbtinis neuroninis tinklas, asfaltines dangos. Kopsavilkums. Ilgu laika periodu celu segas inzenierija netika izmantotas maksliga intelekta metodes, bet to pielietojums klust aizvien nozimigaks. Atskiriba no citiem ceaa segu inzenierijas izpetes subjektiem ta tas nav ar starpslanu bides izpeti. Dota raksta merkis ir pielietot maksligo intelektu maksliga neirala tikla veida ar noluku iegut zinasanas no cela segu inzenierijas datiem par starpslanu sakeri. Tas nozime, ka uzmaniba fokuseta uz maksligo neiralo tiklu praktisko izmantosanu starpslanu sakeres datu kopu izpete ar noluku atrast modeli ar kura palidzibu varetu prognozet noteiktas starpslanu sakeres ipasibas. Paradits, ka maksligo neiralo t?klu metode ir deriga modelu izstradei balstoties uz datu kopam. Modeli lauj prognozet tadus starpslanu bides raksturlielumus ka maksimalais bides speks, deformacija pie maksimala bides sprieguma un maksimalais bides stingums. Atslegvardi: starpslanu sakeres parbaudes iekartas, maksligas neiralais tikls, asfalta segas. Kokkuvote. Pikka aega ei ole katete projekteerimisel kasutatud kunstlikke intellekti vahendeid, aga nende kasutamine muutub uha tahtsamaks. Vastandudes teistele katete projekteerimise teemadele, ei ole see veel kihtidevahelise seotuse kusimus. Kaesoleva artikli eesmargiks on kasutada kunstlikku intellekti kunstlike narvivorkude kujul teadmiste hankimiseks katete projekteerimisandmetest kihtide seotuse alal. See tahendab, et fookus on kunstlike narvivorkude kasutamisel kihtidevahelise seotuse andmetes, et leida andmete seotus ning prognoosida kindlaid kihtide seotuse omadusi. On naidatud, et kunstlike narvivorkude meetod sobib andmekogudest mudelite koostamiseks ning siduskihtide nihkeomaduste (nihkejoud, deformatsioon maksimaalse nihkejou juures, maksimaalne nihkejaikus) prognoosiks. Votmesonad: kihtidevahelise seotuse katseseade, kunstlik narvivork, asfaltkatted.
ISSN:1822-427X
DOI:10.3846/bjrbe.2013.14