Investigations on HONO formation from photolysis of adsorbed HNO3 on quartz glass surfaces

During the last few decades, nitrous acid (HONO) has attracted significant attention as a major source of the OH radical, the detergent of the atmosphere. However, the different daytime sources identified in the laboratory are still the subject of controversial discussion. In the present study, one...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 18; no. 14; p. 9616
Main Authors Laufs, Sebastian, Kleffmann, Jörg
Format Journal Article
LanguageEnglish
Published England 14.04.2016
Online AccessGet full text
ISSN1463-9084
1463-9084
DOI10.1039/c6cp00436a

Cover

More Information
Summary:During the last few decades, nitrous acid (HONO) has attracted significant attention as a major source of the OH radical, the detergent of the atmosphere. However, the different daytime sources identified in the laboratory are still the subject of controversial discussion. In the present study, one of these postulated HONO sources, the heterogeneous photolysis of nitric acid (HNO3), was studied on quartz glass surfaces in a photo flow-reactor under atmospherically relevant conditions. In contrast to other investigations, a very low HNO3 photolysis frequency for HONO formation of J(HNO3→ HONO) = 2.4 × 10(-7) s(-1) (0° SZA, 50% r.h.) was determined. If these results can be translated to atmospheric surfaces, HNO3 photolysis cannot explain the significant HONO levels in the daytime atmosphere. In addition, it is demonstrated that even the small measured yields of HONO did not result from the direct photolysis of HNO3 but rather from the consecutive heterogeneous conversion of the primary photolysis product NO2 on the humid surfaces. The secondary NO2 conversion was not photo-enhanced on pure quartz glass surfaces in good agreement with former studies. A photolysis frequency for the primary reaction product NO2 of J(HNO3→ NO2) = 1.1 × 10(-6) s(-1) has been calculated (0° SZA, 50% r.h.), which indicates that renoxification by photolysis of adsorbed HNO3 on non-reactive surfaces is also a minor process in the atmosphere.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9084
1463-9084
DOI:10.1039/c6cp00436a