Pollen Grain Recognition Using Deep Learning
Pollen identification helps forensic scientists solve elusive crimes, provides data for climate-change modelers, and even hints at potential sites for petroleum exploration. Despite its wide range of applications, most pollen identification is still done by time-consuming visual inspection by well-t...
Saved in:
Published in | Advances in Visual Computing Vol. 10072; pp. 321 - 330 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319508344 3319508342 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-50835-1_30 |
Cover
Summary: | Pollen identification helps forensic scientists solve elusive crimes, provides data for climate-change modelers, and even hints at potential sites for petroleum exploration. Despite its wide range of applications, most pollen identification is still done by time-consuming visual inspection by well-trained experts. Although partial automation is currently available, automatic pollen identification remains an open problem. Current pollen-classification methods use pre-designed features of texture and contours, which may not be sufficiently distinctive. Instead of using pre-designed features, our pollen-recognition method learns both features and classifier from training data under the deep-learning framework. To further enhance our network’s classification ability, we use transfer learning to leverage knowledge from networks that have been pre-trained on large datasets of images. Our method achieved $$\approx $$ 94% classification rate on a dataset of 30 pollen types. These rates are among the highest obtained in this problem. |
---|---|
Bibliography: | Original Abstract: Pollen identification helps forensic scientists solve elusive crimes, provides data for climate-change modelers, and even hints at potential sites for petroleum exploration. Despite its wide range of applications, most pollen identification is still done by time-consuming visual inspection by well-trained experts. Although partial automation is currently available, automatic pollen identification remains an open problem. Current pollen-classification methods use pre-designed features of texture and contours, which may not be sufficiently distinctive. Instead of using pre-designed features, our pollen-recognition method learns both features and classifier from training data under the deep-learning framework. To further enhance our network’s classification ability, we use transfer learning to leverage knowledge from networks that have been pre-trained on large datasets of images. Our method achieved \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document}94% classification rate on a dataset of 30 pollen types. These rates are among the highest obtained in this problem. |
ISBN: | 9783319508344 3319508342 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-50835-1_30 |