Scheduling and feedback co-design for networked control systems
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCSs). The insertion of the communication network in the feedback control loop makes the analysis and design of an NCS complex. Driving our research effort into NCSs is the...
Saved in:
| Published in | Proceedings of the 41st IEEE Conference on Decision and Control, 2002 Vol. 2; pp. 1211 - 1217 vol.2 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
2002
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 0780375165 9780780375161 |
| ISSN | 0191-2216 |
| DOI | 10.1109/CDC.2002.1184679 |
Cover
| Summary: | Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCSs). The insertion of the communication network in the feedback control loop makes the analysis and design of an NCS complex. Driving our research effort into NCSs is the point of view that the design of both the communication protocols and the interacting controlled system should not be treated as separate. In the co-design approach we propose, network issues such as bandwidth, quantization, survivability, reliability and message delay will be considered simultaneously with controlled system issues such as stability, performance, fault tolerance and adaptability. Thus, we study network scheduling when a set of NCSs are connected to the network and arbitrating for network bandwidth. We first define the basic concepts of network scheduling in NCSs. Then, we apply the rate monotonic scheduling algorithm to schedule a set of NCSs. We also formulate the optimal scheduling problem under both rate-monotonic-schedulability constraints and NCS-stability constraints, and give an example of how such optimization is carried out. Next, the assumptions of ideal transmission are relaxed: we study the above network scheduling problem with network-induced delay, packet dropouts, and multiple-packet transmissions taken into account. |
|---|---|
| ISBN: | 0780375165 9780780375161 |
| ISSN: | 0191-2216 |
| DOI: | 10.1109/CDC.2002.1184679 |