Exploring Scholarly Impact Metrics in Receipt of Highly Prestigious Awards
The authoritative data that underlies research information management (RIM) systems supports fine-grained analyses of faculty members’ research practices and output, data-driven decision making, and organizational research management. Administrators at Texas A&M University (TAMU) asked the Unive...
Saved in:
Published in | Information in Contemporary Society Vol. 11420; pp. 147 - 153 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030157415 9783030157418 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-15742-5_13 |
Cover
Summary: | The authoritative data that underlies research information management (RIM) systems supports fine-grained analyses of faculty members’ research practices and output, data-driven decision making, and organizational research management. Administrators at Texas A&M University (TAMU) asked the University Libraries to develop institutional reports that describe faculty research practices and identify their research strengths. The library runs Scholars@TAMU (https://scholars.library.tamu.edu/) based on VIVO, a member-supported, open source, semantic-web software program, as the university’s RIM system. This paper explores the scholarly impact and collaboration practices of senior faculty members in the College of Engineering at TAMU and identifies relationships between their impact metrics and collaboration practices. Full professors were divided into three groups: (1) those who received highly prestigious (HP) awards, (2) those who received prestigious (P) awards, and (3) those who did not receive any awards categorized as either HP or P by the National Research Council. The study’s results showed that the faculty members with HP awards had significantly higher mean ranks for their total citation count, the citation count of their top cited article, their h-index, and their total number of publications than did the faculty members without any HP or P awards. The findings from this study can inform researchers, university administrators, and bibliometric communities about the use of awards as an indicator that corresponds to other research performance indicators. Furthermore, researchers could also use the study’s results to develop a machine-learning model that could identify those faculty who are on track to win HP awards in the future. |
---|---|
ISBN: | 3030157415 9783030157418 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-15742-5_13 |