심층 강화학습 기반의 대학 전공과목 추천 시스템

기존의 단순 통계 기반 추천 시스템은 학생들의 수강 이력 데이터만을 활용하기 때문에 선호하는 수업을 찾는 것에 많은 어려움을 겪고 있다. 이를 해결하기 위해, 본 연구에서는 심층 강화학습 기반의 개인화된 전공과목 추천 시스 템을 제안한다. 이 시스템은 학생의 학과, 학년, 수강 이력 등의 정형 데이터를 기반으로 학생들 간의 유사도를 측정하 며, 이를 통해 각 전공과목에 대한 정보와 학생들의 강의 평가를 종합적으로 고려하여 가장 적합한 전공과목을 추천한다. 본 논문에서는 이 DRL 기반의 추천 시스템을 통해 대학생들이 전공과목을 선택...

Full description

Saved in:
Bibliographic Details
Published inThe journal of the institute of internet, broadcasting and communication : JIIBC Vol. 23; no. 4; pp. 9 - 15
Main Authors 임덕선, 민연아, 임동균
Format Journal Article
LanguageKorean
Published 한국인터넷방송통신학회 31.08.2023
Subjects
Online AccessGet full text
ISSN2289-0238
2289-0246
DOI10.7236/JIIBC.2023.23.4.9

Cover

More Information
Summary:기존의 단순 통계 기반 추천 시스템은 학생들의 수강 이력 데이터만을 활용하기 때문에 선호하는 수업을 찾는 것에 많은 어려움을 겪고 있다. 이를 해결하기 위해, 본 연구에서는 심층 강화학습 기반의 개인화된 전공과목 추천 시스 템을 제안한다. 이 시스템은 학생의 학과, 학년, 수강 이력 등의 정형 데이터를 기반으로 학생들 간의 유사도를 측정하 며, 이를 통해 각 전공과목에 대한 정보와 학생들의 강의 평가를 종합적으로 고려하여 가장 적합한 전공과목을 추천한다. 본 논문에서는 이 DRL 기반의 추천 시스템을 통해 대학생들이 전공과목을 선택하는 데에 유용한 정보를 제공하며, 이를 통계 기반 추천 시스템과 비교하였을 때 더 우수한 성능을 보여주는 것을 확인하였다. 시뮬레이션 결과, 심층 강화학습 기반의 추천 시스템은 통계 기반 추천 시스템에 비해 수강 과목 예측률에서 약 20%의 성능 향상을 보였다. 이러한 결과 를 바탕으로, 학생들의 강의 평가를 반영하여 개인화된 과목 추천을 제공하는 새로운 시스템을 제안한다. 이 시스템은 학생들이 자신의 선호와 목표에 맞는 전공과목을 찾는 데에 큰 도움이 될 것으로 기대한다.
Bibliography:KISTI1.1003/JNL.JAKO202326257736885
ISSN:2289-0238
2289-0246
DOI:10.7236/JIIBC.2023.23.4.9