이중 딥러닝 기법을 활용한 지하공동구 작업자의 쓰러짐 검출 연구

연구목적: 본 논문은 CCTV 영상을 활용한 딥러닝 객체 인식 기술을 적용해 지하공동구 내 쓰러진 관리 인력의 검출 방법을 제시하고, 제안 방법의 관리인력 모니터링 적용성을 평가한다. 연구방법: 사람 검 출 목적으로 사전 훈련된 YOLOv5와 OpenPose 모델의 추론 결과로부터 쓰러짐을 판별할 수 있는 규칙 을 제안하고, 각 모델의 결과를 통합해 지하공동구 내 작업자 쓰러짐 검출에 적용하였다. 연구결과: 제 안된 모델로 작업인력의 감지 및 쓰러짐을 판단할 수 있었으나, CCTV와 작업자 간격 및 작업자가 쓰러 진 방향에 의존해...

Full description

Saved in:
Bibliographic Details
Published in한국재난정보학회논문집 Vol. 19; no. 3; pp. 498 - 509
Main Authors 김정수, 박상미, 홍창희
Format Journal Article
LanguageKorean
Published 30.09.2023
Subjects
Online AccessGet full text
ISSN1976-2208
2671-5287

Cover

More Information
Summary:연구목적: 본 논문은 CCTV 영상을 활용한 딥러닝 객체 인식 기술을 적용해 지하공동구 내 쓰러진 관리 인력의 검출 방법을 제시하고, 제안 방법의 관리인력 모니터링 적용성을 평가한다. 연구방법: 사람 검 출 목적으로 사전 훈련된 YOLOv5와 OpenPose 모델의 추론 결과로부터 쓰러짐을 판별할 수 있는 규칙 을 제안하고, 각 모델의 결과를 통합해 지하공동구 내 작업자 쓰러짐 검출에 적용하였다. 연구결과: 제 안된 모델로 작업인력의 감지 및 쓰러짐을 판단할 수 있었으나, CCTV와 작업자 간격 및 작업자가 쓰러 진 방향에 의존해 검출성능이 영향을 받았다. 또한 지하공동구 작업자에 대해 YOLOv5 기반 쓰러짐 판 별 규칙 적용 모델이 거리 및 쓰러짐 방향 의존성이 낮아 OpenPose 기반 모델에 비해 우수한 성능을 보 였다. 그 결과 통합된 이중 딥러닝 모델의 쓰러짐 검출 결과는 YOLOv5 결과에 종속되었다. 결론: 제안 모델을 통해 지하공동구 작업자의 이상상황 검출이 가능함을 보였으나, 개별 딥러닝 모델별 사람 감지 성능 차이로 인해 YOLOv5 기반 모델 대비 통합 모델의 쓰러짐 검출 성능 개선은 미미하였다.
Bibliography:KISTI1.1003/JNL.JAKO202328943340128
ISSN:1976-2208
2671-5287