시간 단위 그룹핑을 이용한 빈발 아이템셋 마이닝

데이터 마이닝은 데이터를 탐색하고 분석하여 데이터 사이의 관계나 패턴 등의 지식을 탐사하는 기법이다. 실 세계에서 발생하는 데이터는 시간 속성을 포함한다. 시간 속성을 포함하는 데이터에서 유용한 지식을 찾아내기 위한 시간 데이터마이닝 연구는 미래를 예측할 수 있는 예측 판단에 효율적으로 활용될 수 있다. 본 논문은 데이터베이스 를 일정한 시간 간격 단위로 구분하고, 시간 단위에서 빈발한 패턴 아이템셋을 발견하기 위한 시간 단위 그룹핑을 이 용하는 알고리즘을 제안한다. 제안하는 알고리즘은 시간 단위에 포함된 트랜잭션과 아이템 정보를...

Full description

Saved in:
Bibliographic Details
Published inJournal of the convergence on culture technology : JCCT Vol. 8; no. 6; pp. 647 - 653
Main Author 황정희
Format Journal Article
LanguageKorean
Published 30.11.2022
Subjects
Online AccessGet full text
ISSN2384-0358
2384-0366

Cover

More Information
Summary:데이터 마이닝은 데이터를 탐색하고 분석하여 데이터 사이의 관계나 패턴 등의 지식을 탐사하는 기법이다. 실 세계에서 발생하는 데이터는 시간 속성을 포함한다. 시간 속성을 포함하는 데이터에서 유용한 지식을 찾아내기 위한 시간 데이터마이닝 연구는 미래를 예측할 수 있는 예측 판단에 효율적으로 활용될 수 있다. 본 논문은 데이터베이스 를 일정한 시간 간격 단위로 구분하고, 시간 단위에서 빈발한 패턴 아이템셋을 발견하기 위한 시간 단위 그룹핑을 이 용하는 알고리즘을 제안한다. 제안하는 알고리즘은 시간 단위에 포함된 트랜잭션과 아이템 정보를 매트릭스로 구성하 고, 그룹핑을 통한 시간 단위에서의 빈발한 아이템셋을 발견한다. 성능평가의 실험 결과에서 수행시간은 기존의 알고 리즘보다 1.2배 소요되지만, 2배 이상의 빈발 아이템셋이 탐사되었다.
Bibliography:KISTI1.1003/JNL.JAKO202234257569844
ISSN:2384-0358
2384-0366