SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구
본 논문은 현대 기술이 발전함에 따라 다양한 화학 제품 및 인화성 물질이 광범위하게 사용되면서 각종 산업 재해 및 농지와 대형 산불로 이어질 수 있는 화재 예방을 위해 효율적인 화재 식별을 탐지하는 모델을 제시한다. 본 논문에서는 영상을 활용하여 효율이 높고 빠른 시간안에 화재 연기를 검출할 수 있는 알고리즘을 제시하며, SVM(Support Vector Machine)과 K 접힘 교차 검증 기술을 기반으로 한 알고리즘을 제시한다. 영상을 분석하여 화 재 및 연기 검출 알고리즘은 기존의 알고리즘에 비해 상대적으로 검출 성능이 우수하...
Saved in:
Published in | Journal of the convergence on culture technology : JCCT Vol. 9; no. 5; pp. 843 - 847 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
31.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2384-0358 2384-0366 |
Cover
Summary: | 본 논문은 현대 기술이 발전함에 따라 다양한 화학 제품 및 인화성 물질이 광범위하게 사용되면서 각종 산업 재해 및 농지와 대형 산불로 이어질 수 있는 화재 예방을 위해 효율적인 화재 식별을 탐지하는 모델을 제시한다. 본 논문에서는 영상을 활용하여 효율이 높고 빠른 시간안에 화재 연기를 검출할 수 있는 알고리즘을 제시하며, SVM(Support Vector Machine)과 K 접힘 교차 검증 기술을 기반으로 한 알고리즘을 제시한다. 영상을 분석하여 화 재 및 연기 검출 알고리즘은 기존의 알고리즘에 비해 상대적으로 검출 성능이 우수하며, 본 논문에서 검출하는 화재 및 연기의 특징 분석이 안정적이고 효율적으로 분석되어 향후 화재 위험에 노출될 수 있는 다양한 분야에서 활용될 것으로 판단된다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202329860873420 |
ISSN: | 2384-0358 2384-0366 |