Local R-linear convergence of ADMM-based algorithm for ℓ1-norm minimization with linear and box constraints
This paper presents an efficient algorithm based on the alternating direction method of multipliers (ADMM) for an ℓ1-norm minimization problem with linear equality and box constraints. In the ADMM iterations, sub-problems, called proximal minimizations, are solved to obtain the next updating points...
Saved in:
| Published in | Systems & control letters Vol. 146 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-6911 1872-7956 |
| DOI | 10.1016/j.sysconle.2020.104824 |
Cover
| Summary: | This paper presents an efficient algorithm based on the alternating direction method of multipliers (ADMM) for an ℓ1-norm minimization problem with linear equality and box constraints. In the ADMM iterations, sub-problems, called proximal minimizations, are solved to obtain the next updating points by exploiting closed formulae. Furthermore, the local R-linear convergence is established by analysis, focusing on the dynamical structure of the ADMM iterations. Numerical examples illustrate obtained theoretical results and the effectiveness of the algorithm. |
|---|---|
| ISSN: | 0167-6911 1872-7956 |
| DOI: | 10.1016/j.sysconle.2020.104824 |