Discovering syntactic deep structure via Bayesian statistics
In the Bayesian framework, a language learner should seek a grammar that explains observed data well and is also a priori probable. This paper proposes such a measure of prior probability. Indeed it develops a full statistical framework for lexicalized syntax. The learner’s job is to discover the sy...
Saved in:
| Published in | Cognitive science Vol. 26; no. 3; pp. 255 - 268 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
2002
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0364-0213 |
| DOI | 10.1016/S0364-0213(02)00069-1 |
Cover
| Summary: | In the Bayesian framework, a language learner should seek a grammar that explains observed data well and is also
a priori probable. This paper proposes such a measure of prior probability. Indeed it develops a full statistical framework for lexicalized syntax. The learner’s job is to discover the system of probabilistic transformations (often called lexical redundancy rules) that underlies the patterns of regular and irregular syntactic constructions listed in the lexicon. Specifically, the learner discovers what transformations apply in the language, how often they apply, and in what contexts. It considers simpler systems of transformations to be more probable
a priori. Experiments show that the learned transformations are more effective than previous statistical models at predicting the probabilities of lexical entries, especially those for which the learner had no direct evidence. |
|---|---|
| ISSN: | 0364-0213 |
| DOI: | 10.1016/S0364-0213(02)00069-1 |