The neurobench framework for benchmarking neuromorphic computing algorithms and systems

Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 1545 - 24
Main Authors Yik, Jason, Van den Berghe, Korneel, den Blanken, Douwe, Bouhadjar, Younes, Fabre, Maxime, Hueber, Paul, Ke, Weijie, Khoei, Mina A, Kleyko, Denis, Pacik-Nelson, Noah, Pierro, Alessandro, Stratmann, Philipp, Sun, Pao-Sheng Vincent, Tang, Guangzhi, Wang, Shenqi, Zhou, Biyan, Ahmed, Soikat Hasan, Vathakkattil Joseph, George, Leto, Benedetto, Micheli, Aurora, Mishra, Anurag Kumar, Lenz, Gregor, Sun, Tao, Ahmed, Zergham, Akl, Mahmoud, Anderson, Brian, Andreou, Andreas G, Bartolozzi, Chiara, Basu, Arindam, Bogdan, Petrut, Bohte, Sander, Buckley, Sonia, Cauwenberghs, Gert, Chicca, Elisabetta, Corradi, Federico, de Croon, Guido, Danielescu, Andreea, Daram, Anurag, Davies, Mike, Demirag, Yigit, Eshraghian, Jason, Fischer, Tobias, Forest, Jeremy, Fra, Vittorio, Furber, Steve, Furlong, P. Michael, Gilpin, William, Gilra, Aditya, Gonzalez, Hector A, Indiveri, Giacomo, Joshi, Siddharth, Karia, Vedant, Khacef, Lyes, Knight, James C, Kriener, Laura, Kubendran, Rajkumar, Kudithipudi, Dhireesha, Liu, Shih-Chii, Liu, Yao-Hong, Ma, Haoyuan, Manohar, Rajit, Margarit-Taulé, Josep Maria, Mayr, Christian, Michmizos, Konstantinos, Muir, Dylan R, Neftci, Emre, Nowotny, Thomas, Ottati, Fabrizio, Ozcelikkale, Ayca, Panda, Priyadarshini, Park, Jongkil, Payvand, Melika, Pehle, Christian, Petrovici, Mihai A, Posch, Christoph, Renner, Alpha, Sandamirskaya, Yulia, Schaefer, Clemens J. S, van Schaik, André, Schemmel, Johannes, Schmidgall, Samuel, Schuman, Catherine, Seo, Jae-sun, Sheik, Sadique, Shrestha, Sumit Bam, Sifalakis, Manolis, Sironi, Amos, Stewart, Kenneth, Stewart, Matthew, Stewart, Terrence C, Timcheck, Jonathan, Tömen, Nergis, Urgese, Gianvito, Verhelst, Marian, Vineyard, Craig M, Vogginger, Bernhard, Yousefzadeh, Amirreza, Zohora, Fatima Tuz, Frenkel, Charlotte, Reddi, Vijay Janapa
Format Journal Article
LanguageEnglish
Published London Springer Nature 11.02.2025
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-56739-4

Cover

More Information
Summary:Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. This article presents NeuroBench, a benchmark framework for neuromorphic algorithms and systems, which is collaboratively designed from an open community of researchers across industry and academia. NeuroBench introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent and hardware-dependent settings. For latest project updates, visit the project website (neurobench.ai).
NRC publication: Yes
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
NA0003525
National Science Foundation (NSF)
USDOE National Nuclear Security Administration (NNSA)
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-025-56739-4