Adaptive Control Technique for Portable Solar Powered EV Charging Adapter to Operate in Remote Location

Every EV (Electric Vehicle) comes with limited energy storing capability. After travelling a certain distance, a charging facility is required to recharge the EV batteries, which is easy to be made available in cities. But, in remote locations, charging service is challenging. Therefore, big countri...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of circuits and systems Vol. 4; pp. 115 - 125
Main Authors Kumar, Nishant, Singh, Harshit Kumar, Niwareeba, Roland
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2644-1225
2644-1225
DOI10.1109/OJCAS.2023.3247573

Cover

More Information
Summary:Every EV (Electric Vehicle) comes with limited energy storing capability. After travelling a certain distance, a charging facility is required to recharge the EV batteries, which is easy to be made available in cities. But, in remote locations, charging service is challenging. Therefore, big countries like USA, Canada, China, Russia, India, Australia, and few Arabian countries are planning to provide pillar top solar panels on remote locations for EV charging in emergency situations. To operate in this situation, a special charging adapter is required to extract maximum power from the panel using the MPPT (Maximum Power Point Tracking) technique, monitor the charging current, and safely complete the charging process. In this paper, a single sensor-based economical charging adapter is presented for EVs to fulfil this objective. Moreover, the Single Input Fuzzy Logic tuned Deterministic Optimization (SIFL-DO) algorithm is proposed to accomplish MPPT operation and battery charging management. Because of its low cost and fast response, the single current sensor-based charging adapter is highly economical. Additionally, the SIFL-DO algorithm has very good condition estimation and decision-making capability, which accurately performs MPPT and charging management. In this work, the capability of the developed adapter with the SIFL-DO algorithm is evaluated on Hardware prototype. Also, comparative studies are performed w.r.t. state-of-the-art techniques. Further to determine the industry's suitability, the developed technique is tested on European Standard EN50530.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2644-1225
2644-1225
DOI:10.1109/OJCAS.2023.3247573