Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce no...
        Saved in:
      
    
          | Published in | Atmospheric measurement techniques Vol. 18; no. 3; pp. 793 - 816 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Katlenburg-Lindau
          Copernicus GmbH
    
        13.02.2025
     Copernicus Publications  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1867-1381 1867-8548 1867-8548  | 
| DOI | 10.5194/amt-18-793-2025 | 
Cover
| Abstract | Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and ωradlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistent KDP (KDPsc) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ.Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values. | 
    
|---|---|
| AbstractList | Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and ωradlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistent KDP (KDPsc) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ.Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values. Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP , which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and ω radlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistent KDP ( K DP sc <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="21pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9923a88b3735998a4e2b8048a7297133"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-793-2025-ie00001.svg" width="21pt" height="15pt" src="amt-18-793-2025-ie00001.png"/></svg:svg> ) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ. Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values.  | 
    
| Author | Aldana, Miguel Pulkkinen, Seppo Annakaisa von Lerber Kumjian, Matthew R Moisseev, Dmitri  | 
    
| Author_xml | – sequence: 1 givenname: Miguel surname: Aldana fullname: Aldana, Miguel – sequence: 2 givenname: Seppo surname: Pulkkinen fullname: Pulkkinen, Seppo – sequence: 3 fullname: Annakaisa von Lerber – sequence: 4 givenname: Matthew surname: Kumjian middlename: R fullname: Kumjian, Matthew R – sequence: 5 givenname: Dmitri surname: Moisseev fullname: Moisseev, Dmitri  | 
    
| BookMark | eNo9kc1vVCEUxYmpST903S2J62f5HnCno7aNTXSha3IHeDOM82AKvNb-92U6jSsI5PzOveeco5OUU0DokpKPkhpxBVMbqB4Whg-MMPkGnVGtFoOWQp-83inX9BSd17olRAm6YGfo35eQ3GaC8jemNf7x9ReOCReIaYTd7hMGfD9DarFBiw8BQ62h1imkhvOIQ21x6h85Yditc4ltM1U81wNpOawgefwYoG1C6UQPBedVDeXhRVHfobfdoob3r-cF-vP92-_lzXD38_p2-flu8MyQNjBtjPeCaeU893xcgVHSqaCDo94Zt-KKSqnAgASnHBXEjFwpIb3yTmrJL9DtkeszbO2-9InLk80Q7ctDLmsLpUW3C9aQnhIQKT2RYtSjYUQIQRUztNto01nkyJrTHp4ee0L_gZTYQwu2t2Cptr0Fe2ihSz4cJfuS7-eemN3muaS-seVUKUqpNow_A9sfihE | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.5194/amt-18-793-2025 | 
    
| DatabaseName | Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology | 
    
| EISSN | 1867-8548 | 
    
| EndPage | 816 | 
    
| ExternalDocumentID | oai_doaj_org_article_90186a055d054f8f92044416291b3689 10.5194/amt-18-793-2025  | 
    
| GeographicLocations | Vantaa Finland Finland  | 
    
| GeographicLocations_xml | – name: Finland – name: Vantaa Finland  | 
    
| GroupedDBID | 23N 5VS 7QH 7TG 7TN 7UA 8FD 8FE 8FG 8FH 8R4 8R5 AAFWJ ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU D1K DWQXO E3Z ESX F1W GROUPED_DOAJ H13 H8D H96 HCIFZ IAO IEA ISR ITC K6- KL. KQ8 L.G L7M LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC Q2X RKB RNS TR2 TUS ADTOC C1A IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-d290t-2899dd4286cd3d3fba965c6e8ec1dc9cb361556a9a5ac6c1409f36645d6dc5853 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1867-1381 1867-8548  | 
    
| IngestDate | Fri Oct 03 12:51:45 EDT 2025 Sun Sep 07 11:22:38 EDT 2025 Fri Jul 25 22:06:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-d290t-2899dd4286cd3d3fba965c6e8ec1dc9cb361556a9a5ac6c1409f36645d6dc5853 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doaj.org/article/90186a055d054f8f92044416291b3689 | 
    
| PQID | 3166111892 | 
    
| PQPubID | 105742 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_90186a055d054f8f92044416291b3689 unpaywall_primary_10_5194_amt_18_793_2025 proquest_journals_3166111892  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-02-13 | 
    
| PublicationDateYYYYMMDD | 2025-02-13 | 
    
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-13 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Katlenburg-Lindau | 
    
| PublicationPlace_xml | – name: Katlenburg-Lindau | 
    
| PublicationTitle | Atmospheric measurement techniques | 
    
| PublicationYear | 2025 | 
    
| Publisher | Copernicus GmbH Copernicus Publications  | 
    
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications  | 
    
| SSID | ssj0064172 | 
    
| Score | 2.3968778 | 
    
| Snippet | Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality... | 
    
| SourceID | doaj unpaywall proquest  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database  | 
    
| StartPage | 793 | 
    
| SubjectTerms | Accuracy Algorithms Atmospheric radiation Atmospheric radiation measurements C band Calibration Classification Data quality control Datasets Downward long wave radiation Errors Estimates Estimation errors Meteorological radar Methods Noise reduction Parameter estimation Performance evaluation Precipitation Precipitation estimation Python Quality control Radar Radar data Radiation measurement Rain Rainfall Reflectance Variables Weather Weather radar  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXp5tBeSj_pNmnRoRR6ELFsSbECpXS3CaElSygN5CbGkrwJ7NqbXS9p_31n_LFtLz3aGMnojUZvRtIbxt6VSuusCF54Q9kqm2gBQSUiD8dB2VioCBQoXszM-ZX6eq2v99hsuAtDxyoHn9g66lB7ypEfZRJXEmTDNv20uhNUNYp2V4cSGtCXVggfW4mxB2w_JWWsEdufnM4uvw--2SjZlnMiFTdS35Od2A-yGHUEy0bIXKC9ouVQ5exWw_8f4vlwW63g1z0sFn-tQWdP2OOePPLPHdpP2V6snrHxBfLeet2mx_l7Pl3cIgltn56znxM0wpsltAlx_u3LJb-tOBWFKLH1Ew78bgtVe80MnR6HnUonr0tO8hvdvUYOizkORXOz3HA6Jz_nU1FAFfh9xx-xxQBrXhe7DO_mBbs6O_0xPRd9rQURUps0guKuEDAWMT5kISsLsEZ7E_PoZfDWFxltYBqwoMEbTzJZZWaM0sEEjyFH9pKNqrqKrxhHzq6RdnqdxqjABwtBgk9sFhXSKaPGbEIj61adnIYjgev2Rb2eu36-OKQpuYFE64CcssxLm5KwnTSplfgruR2zwwEX18-6jftjI2P2YYfVriOMdwhph0g7mTtE2hHSr__f1AF7RF_RSW2ZHbJRs97GN0hEmuJtb12_AdSG3cc priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXK9gCX8i0WCvIBIXFwieMP7N7ahWpV1KoHViona2I77YrdpN3NqtBfzzhJVwX1UE75UJSM8sbJe2P7mZD3pVRKFMEzr1O1ymaKQZAZM-FzkDYWMkISikfHejyRh6fqtDdJSnNhbvXfI7eQn2DeMG4YZhHimasHZFMrJN0Dsjk5Ptn7keSUwabORbscabtvkIR3Jj533aH35v-LUD5cVRfw-wpms1v_loPHZHwTVTek5OfOqil2_PU_ho33CPsJ2er5Jd3rEuIp2YjVMzI8QmpcL9oKOv1AR7Mp8tT26Dn5tY95ej6HtmZOv305odOKpnUjSgx0lwK9XEHVzkTD7yKFtZEnrUuaHDq6qY8UZmf1Ytqcz5c0DaU_oyNWQBXoVUcx8Y4BFrQu1kXg5QsyOfj6fTRm_XIMLOQ2a1iSZiGgXNE-iCDKAqxWXkcTPQ_e-kKkPk4NFhR47ZOTVim0liro4FGViJdkUNVVfEUo0nqFzNSrPEYJPlgIHHxmRZTIuLQckv0EkrvoHDdc8sBuT-A7dn2TcshkjIZMqYC0szSlzZP3Hde55RiKsUOyfQOx6xvm0gmOhARFlc2H5OMa9vWDUBIl_Bzi57hxiJ9L-L3-j2vfkEdpk0Z2c7FNBs1iFd8icWmKd33S_gFauugh priority: 102 providerName: Unpaywall  | 
    
| Title | Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations | 
    
| URI | https://www.proquest.com/docview/3166111892 https://doi.org/10.5194/amt-18-793-2025 https://doaj.org/article/90186a055d054f8f92044416291b3689  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgHOCC-BSBEvmAkDhYXa8_anNrQkMFahQhIpWTNWt720jJbkk2Kvx7xt40KicuHL0Hr-U3tt8b2W8IeVdLpUQVPPM6ZatsoRgEWTATjoO0sZIRklA8n-qzufxyoS7ulPpKd8J6e-B-4o7wvDIaCqUCkova1LZMDmdcl5ZXQpv8dK8w9lZM9XuwljyXbUpubcllj_emPshW5BGsOsYNw7jECEkVsrNX_18E8-G2uYbfN7Bc3jlrJk_I4x1JpCf94J6Se7F5RgbnyG_bdU6D0_d0vFwg2cyt5-TXCIPtagU58U2_fprRRUNT8Ycae_9Igf7cQpOfk-HmRmHvxknbmiabjf79IoXlZbtedFerDU334S_pmFXQBHrT80TsMcCattU-k7t5QeaT0-_jM7arqcBCaYuOJX0VAmoO7YMIoq7AauV1NNHz4K3HOUWGocGCAq99ssOqhdZSBR08Sgvxkhw0bRNfEYrcXCG99KqMUYIPFgIHX1gRJdImLQdklGbWXfe2GS4ZWecPCK_bwev-Be-AHN7i4nara-MER1aBysiWA_Jhj9X-R6hrEtIOkXbcOETaJaRf_4_xvCGPUl_p3jYXh-SgW2_jW6QlXTUk983k85A8GJ1OZ9-GOR6xNZ_OTn78AWCF4YY | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFNsKeADIHGImodtYqQKsdtWW7a7qlAr9WYmtrOttJts96Glf47fxkweC1y49ZhImUSesf3NxPN9jL3LhZRJ5mxgFVWrdCgDcCIMUvfJCe0z4YESxeFI9S_Ftyt5tcV-tb0wdKyyXROrhdqVlmrkB0mEOwmiYR1_md0GpBpFf1dbCQ1opBXcYUUx1jR2DPzdGlO4xeHpEfr7fRyfHF_0-kGjMhC4WIfLgDIO5xCFK-sSl-QZaCWt8qm3kbPaZgn9ulOgQYJVlgii8kQpIZ1yFsF2gnYfsB2RCI3J3073eHT-vd0LlIgq-ShijSO2v6gmF0LUJA5gugyiNMD5gZFKSt2VZsA_QHd3Vczgbg2TyV973slj9qgBq_xrHV1P2JYvnrLOEHF2Oa_K8fwD701uEPRWV8_Yzy4G_fUUqgI8Hxyd85uCkwhFjtY_c-C3KyiqtjZcZDlsWEF5mXOi-6j7KDlMxjj0y-vpgtO5_DHvBRkUjq9rvIoWHcx5mW0qyovn7PJeRv0F2y7Kwr9kHHMEiTDXyth7AdZpcBHYUCdeIHxTosO6NLJmVtN3GCLUrm6U87Fp5qdBWJQqCKV0iGHzNNcxEelFKtYRfkqqO2y_9YtpZvnC_InJDvu48dXmRZhfkacNetpEqUFPG_L03v9NvWW7_YvhmTk7HQ1esYf0BJ0Sj5J9tr2cr_xrBEHL7E0TaZz9uO_g_g0pVBsq | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWrgRceCMKC_gASBy8bRLbxEgI0ZZql9LVIrFib8axne6KNum2qcry0_gr_Blm8iiPA7c9cGykOsnkG_sbj-cbQp6kXIgocZZZibtVqiuYcbzLYvfCceUT7g0GiuMDuXfE3x2L4y3yvamFwWOVzZxYTtQut7hH3okCWEmADauwk9bHIg4Hw9fzM4YdpDDT2rTTqCAy8udrCN-Wr_YH8K2fhuHw7cf-Hqs7DDAXqm7BMNpwDhi4tC5yUZoYJYWVPvY2cFbZJMK0nTTKCGOlRXGoNJKSCyedBaIdwbiXyHaMImgtst0bjj98atYByYOydRQqxqHSX1AJCwFj4h0zK1gQM_ANQCl26S77BfxBcq-ssrk5X5vp9Lf1bnid_GgsVR1z-bK7KpJd--0vEcn_05Q3yLWahtM3ld_cJFs-u0XaY4gg8kWZaKDPaH96CnS-_HWbfO2BO5_MTJlaoKPBIT3NKLbXSMF2L6mhZyuTlQV7sHxQs9E7pXlKUcikqhClZjqBty9OZkuKFQcT2meJyRxdV0wcRnRmQfNks1e-vEOOLsQQd0kryzN_j1CIfgQQeCtC77mxThkXGNtVkedATCVvkx7iRs8rYRKNUuHlhXwx0fXMo4HwxdJ0hXDAztM4VSFKBAYyVAE8SqzaZKdBia7nr6X-BZE2eb5B4uZGEDkijjXgWAexBhxrxPH9fw_1mFwGnOn3-wejB-Qq_gGPvwfRDmkVi5V_COyuSB7VbkTJ54uG208rSmHj | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXK9gCX8i0WCvIBIXFwieMP7N7ahWpV1KoHViona2I77YrdpN3NqtBfzzhJVwX1UE75UJSM8sbJe2P7mZD3pVRKFMEzr1O1ymaKQZAZM-FzkDYWMkISikfHejyRh6fqtDdJSnNhbvXfI7eQn2DeMG4YZhHimasHZFMrJN0Dsjk5Ptn7keSUwabORbscabtvkIR3Jj533aH35v-LUD5cVRfw-wpms1v_loPHZHwTVTek5OfOqil2_PU_ho33CPsJ2er5Jd3rEuIp2YjVMzI8QmpcL9oKOv1AR7Mp8tT26Dn5tY95ej6HtmZOv305odOKpnUjSgx0lwK9XEHVzkTD7yKFtZEnrUuaHDq6qY8UZmf1Ytqcz5c0DaU_oyNWQBXoVUcx8Y4BFrQu1kXg5QsyOfj6fTRm_XIMLOQ2a1iSZiGgXNE-iCDKAqxWXkcTPQ_e-kKkPk4NFhR47ZOTVim0liro4FGViJdkUNVVfEUo0nqFzNSrPEYJPlgIHHxmRZTIuLQckv0EkrvoHDdc8sBuT-A7dn2TcshkjIZMqYC0szSlzZP3Hde55RiKsUOyfQOx6xvm0gmOhARFlc2H5OMa9vWDUBIl_Bzi57hxiJ9L-L3-j2vfkEdpk0Z2c7FNBs1iFd8icWmKd33S_gFauugh | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+KDP+in+rainfall%3A+a+quantitative+assessment+of+estimation+algorithms+using+C-band+weather+radar+observations&rft.jtitle=Atmospheric+measurement+techniques&rft.au=M.+Aldana&rft.au=M.+Aldana&rft.au=S.+Pulkkinen&rft.au=A.+von+Lerber&rft.date=2025-02-13&rft.pub=Copernicus+Publications&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=18&rft.spage=793&rft.epage=816&rft_id=info:doi/10.5194%2Famt-18-793-2025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90186a055d054f8f92044416291b3689 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon |