Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations

Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce no...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 18; no. 3; pp. 793 - 816
Main Authors Aldana, Miguel, Pulkkinen, Seppo, Annakaisa von Lerber, Kumjian, Matthew R, Moisseev, Dmitri
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 13.02.2025
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1867-1381
1867-8548
1867-8548
DOI10.5194/amt-18-793-2025

Cover

Abstract Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and ωradlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistent KDP (KDPsc) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ.Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values.
AbstractList Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and ωradlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistent KDP (KDPsc) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ.Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values.
Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP , which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and ω radlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistent KDP ( K DP sc <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="21pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="9923a88b3735998a4e2b8048a7297133"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-18-793-2025-ie00001.svg" width="21pt" height="15pt" src="amt-18-793-2025-ie00001.png"/></svg:svg> ) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ. Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥  40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values.
Author Aldana, Miguel
Pulkkinen, Seppo
Annakaisa von Lerber
Kumjian, Matthew R
Moisseev, Dmitri
Author_xml – sequence: 1
  givenname: Miguel
  surname: Aldana
  fullname: Aldana, Miguel
– sequence: 2
  givenname: Seppo
  surname: Pulkkinen
  fullname: Pulkkinen, Seppo
– sequence: 3
  fullname: Annakaisa von Lerber
– sequence: 4
  givenname: Matthew
  surname: Kumjian
  middlename: R
  fullname: Kumjian, Matthew R
– sequence: 5
  givenname: Dmitri
  surname: Moisseev
  fullname: Moisseev, Dmitri
BookMark eNo9kc1vVCEUxYmpST903S2J62f5HnCno7aNTXSha3IHeDOM82AKvNb-92U6jSsI5PzOveeco5OUU0DokpKPkhpxBVMbqB4Whg-MMPkGnVGtFoOWQp-83inX9BSd17olRAm6YGfo35eQ3GaC8jemNf7x9ReOCReIaYTd7hMGfD9DarFBiw8BQ62h1imkhvOIQ21x6h85Yditc4ltM1U81wNpOawgefwYoG1C6UQPBedVDeXhRVHfobfdoob3r-cF-vP92-_lzXD38_p2-flu8MyQNjBtjPeCaeU893xcgVHSqaCDo94Zt-KKSqnAgASnHBXEjFwpIb3yTmrJL9DtkeszbO2-9InLk80Q7ctDLmsLpUW3C9aQnhIQKT2RYtSjYUQIQRUztNto01nkyJrTHp4ee0L_gZTYQwu2t2Cptr0Fe2ihSz4cJfuS7-eemN3muaS-seVUKUqpNow_A9sfihE
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.5194/amt-18-793-2025
DatabaseName Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 816
ExternalDocumentID oai_doaj_org_article_90186a055d054f8f92044416291b3689
10.5194/amt-18-793-2025
GeographicLocations Vantaa Finland
Finland
GeographicLocations_xml – name: Finland
– name: Vantaa Finland
GroupedDBID 23N
5VS
7QH
7TG
7TN
7UA
8FD
8FE
8FG
8FH
8R4
8R5
AAFWJ
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
D1K
DWQXO
E3Z
ESX
F1W
GROUPED_DOAJ
H13
H8D
H96
HCIFZ
IAO
IEA
ISR
ITC
K6-
KL.
KQ8
L.G
L7M
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
Q2X
RKB
RNS
TR2
TUS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-d290t-2899dd4286cd3d3fba965c6e8ec1dc9cb361556a9a5ac6c1409f36645d6dc5853
IEDL.DBID DOA
ISSN 1867-1381
1867-8548
IngestDate Fri Oct 03 12:51:45 EDT 2025
Sun Sep 07 11:22:38 EDT 2025
Fri Jul 25 22:06:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d290t-2899dd4286cd3d3fba965c6e8ec1dc9cb361556a9a5ac6c1409f36645d6dc5853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/90186a055d054f8f92044416291b3689
PQID 3166111892
PQPubID 105742
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_90186a055d054f8f92044416291b3689
unpaywall_primary_10_5194_amt_18_793_2025
proquest_journals_3166111892
PublicationCentury 2000
PublicationDate 2025-02-13
PublicationDateYYYYMMDD 2025-02-13
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-13
  day: 13
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0064172
Score 2.3968778
Snippet Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality...
SourceID doaj
unpaywall
proquest
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 793
SubjectTerms Accuracy
Algorithms
Atmospheric radiation
Atmospheric radiation measurements
C band
Calibration
Classification
Data quality control
Datasets
Downward long wave radiation
Errors
Estimates
Estimation errors
Meteorological radar
Methods
Noise reduction
Parameter estimation
Performance evaluation
Precipitation
Precipitation estimation
Python
Quality control
Radar
Radar data
Radiation measurement
Rain
Rainfall
Reflectance
Variables
Weather
Weather radar
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXp5tBeSj_pNmnRoRR6ELFsSbECpXS3CaElSygN5CbGkrwJ7NqbXS9p_31n_LFtLz3aGMnojUZvRtIbxt6VSuusCF54Q9kqm2gBQSUiD8dB2VioCBQoXszM-ZX6eq2v99hsuAtDxyoHn9g66lB7ypEfZRJXEmTDNv20uhNUNYp2V4cSGtCXVggfW4mxB2w_JWWsEdufnM4uvw--2SjZlnMiFTdS35Od2A-yGHUEy0bIXKC9ouVQ5exWw_8f4vlwW63g1z0sFn-tQWdP2OOePPLPHdpP2V6snrHxBfLeet2mx_l7Pl3cIgltn56znxM0wpsltAlx_u3LJb-tOBWFKLH1Ew78bgtVe80MnR6HnUonr0tO8hvdvUYOizkORXOz3HA6Jz_nU1FAFfh9xx-xxQBrXhe7DO_mBbs6O_0xPRd9rQURUps0guKuEDAWMT5kISsLsEZ7E_PoZfDWFxltYBqwoMEbTzJZZWaM0sEEjyFH9pKNqrqKrxhHzq6RdnqdxqjABwtBgk9sFhXSKaPGbEIj61adnIYjgev2Rb2eu36-OKQpuYFE64CcssxLm5KwnTSplfgruR2zwwEX18-6jftjI2P2YYfVriOMdwhph0g7mTtE2hHSr__f1AF7RF_RSW2ZHbJRs97GN0hEmuJtb12_AdSG3cc
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXK9gCX8i0WCvIBIXFwieMP7N7ahWpV1KoHViona2I77YrdpN3NqtBfzzhJVwX1UE75UJSM8sbJe2P7mZD3pVRKFMEzr1O1ymaKQZAZM-FzkDYWMkISikfHejyRh6fqtDdJSnNhbvXfI7eQn2DeMG4YZhHimasHZFMrJN0Dsjk5Ptn7keSUwabORbscabtvkIR3Jj533aH35v-LUD5cVRfw-wpms1v_loPHZHwTVTek5OfOqil2_PU_ho33CPsJ2er5Jd3rEuIp2YjVMzI8QmpcL9oKOv1AR7Mp8tT26Dn5tY95ej6HtmZOv305odOKpnUjSgx0lwK9XEHVzkTD7yKFtZEnrUuaHDq6qY8UZmf1Ytqcz5c0DaU_oyNWQBXoVUcx8Y4BFrQu1kXg5QsyOfj6fTRm_XIMLOQ2a1iSZiGgXNE-iCDKAqxWXkcTPQ_e-kKkPk4NFhR47ZOTVim0liro4FGViJdkUNVVfEUo0nqFzNSrPEYJPlgIHHxmRZTIuLQckv0EkrvoHDdc8sBuT-A7dn2TcshkjIZMqYC0szSlzZP3Hde55RiKsUOyfQOx6xvm0gmOhARFlc2H5OMa9vWDUBIl_Bzi57hxiJ9L-L3-j2vfkEdpk0Z2c7FNBs1iFd8icWmKd33S_gFauugh
  priority: 102
  providerName: Unpaywall
Title Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
URI https://www.proquest.com/docview/3166111892
https://doi.org/10.5194/amt-18-793-2025
https://doaj.org/article/90186a055d054f8f92044416291b3689
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: 8FG
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxELWgHOCC-BSBEvmAkDhYXa8_anNrQkMFahQhIpWTNWt720jJbkk2Kvx7xt40KicuHL0Hr-U3tt8b2W8IeVdLpUQVPPM6ZatsoRgEWTATjoO0sZIRklA8n-qzufxyoS7ulPpKd8J6e-B-4o7wvDIaCqUCkova1LZMDmdcl5ZXQpv8dK8w9lZM9XuwljyXbUpubcllj_emPshW5BGsOsYNw7jECEkVsrNX_18E8-G2uYbfN7Bc3jlrJk_I4x1JpCf94J6Se7F5RgbnyG_bdU6D0_d0vFwg2cyt5-TXCIPtagU58U2_fprRRUNT8Ycae_9Igf7cQpOfk-HmRmHvxknbmiabjf79IoXlZbtedFerDU334S_pmFXQBHrT80TsMcCattU-k7t5QeaT0-_jM7arqcBCaYuOJX0VAmoO7YMIoq7AauV1NNHz4K3HOUWGocGCAq99ssOqhdZSBR08Sgvxkhw0bRNfEYrcXCG99KqMUYIPFgIHX1gRJdImLQdklGbWXfe2GS4ZWecPCK_bwev-Be-AHN7i4nara-MER1aBysiWA_Jhj9X-R6hrEtIOkXbcOETaJaRf_4_xvCGPUl_p3jYXh-SgW2_jW6QlXTUk983k85A8GJ1OZ9-GOR6xNZ_OTn78AWCF4YY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFNsKeADIHGImodtYqQKsdtWW7a7qlAr9WYmtrOttJts96Glf47fxkweC1y49ZhImUSesf3NxPN9jL3LhZRJ5mxgFVWrdCgDcCIMUvfJCe0z4YESxeFI9S_Ftyt5tcV-tb0wdKyyXROrhdqVlmrkB0mEOwmiYR1_md0GpBpFf1dbCQ1opBXcYUUx1jR2DPzdGlO4xeHpEfr7fRyfHF_0-kGjMhC4WIfLgDIO5xCFK-sSl-QZaCWt8qm3kbPaZgn9ulOgQYJVlgii8kQpIZ1yFsF2gnYfsB2RCI3J3073eHT-vd0LlIgq-ShijSO2v6gmF0LUJA5gugyiNMD5gZFKSt2VZsA_QHd3Vczgbg2TyV973slj9qgBq_xrHV1P2JYvnrLOEHF2Oa_K8fwD701uEPRWV8_Yzy4G_fUUqgI8Hxyd85uCkwhFjtY_c-C3KyiqtjZcZDlsWEF5mXOi-6j7KDlMxjj0y-vpgtO5_DHvBRkUjq9rvIoWHcx5mW0qyovn7PJeRv0F2y7Kwr9kHHMEiTDXyth7AdZpcBHYUCdeIHxTosO6NLJmVtN3GCLUrm6U87Fp5qdBWJQqCKV0iGHzNNcxEelFKtYRfkqqO2y_9YtpZvnC_InJDvu48dXmRZhfkacNetpEqUFPG_L03v9NvWW7_YvhmTk7HQ1esYf0BJ0Sj5J9tr2cr_xrBEHL7E0TaZz9uO_g_g0pVBsq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWrgRceCMKC_gASBy8bRLbxEgI0ZZql9LVIrFib8axne6KNum2qcry0_gr_Blm8iiPA7c9cGykOsnkG_sbj-cbQp6kXIgocZZZibtVqiuYcbzLYvfCceUT7g0GiuMDuXfE3x2L4y3yvamFwWOVzZxYTtQut7hH3okCWEmADauwk9bHIg4Hw9fzM4YdpDDT2rTTqCAy8udrCN-Wr_YH8K2fhuHw7cf-Hqs7DDAXqm7BMNpwDhi4tC5yUZoYJYWVPvY2cFbZJMK0nTTKCGOlRXGoNJKSCyedBaIdwbiXyHaMImgtst0bjj98atYByYOydRQqxqHSX1AJCwFj4h0zK1gQM_ANQCl26S77BfxBcq-ssrk5X5vp9Lf1bnid_GgsVR1z-bK7KpJd--0vEcn_05Q3yLWahtM3ld_cJFs-u0XaY4gg8kWZaKDPaH96CnS-_HWbfO2BO5_MTJlaoKPBIT3NKLbXSMF2L6mhZyuTlQV7sHxQs9E7pXlKUcikqhClZjqBty9OZkuKFQcT2meJyRxdV0wcRnRmQfNks1e-vEOOLsQQd0kryzN_j1CIfgQQeCtC77mxThkXGNtVkedATCVvkx7iRs8rYRKNUuHlhXwx0fXMo4HwxdJ0hXDAztM4VSFKBAYyVAE8SqzaZKdBia7nr6X-BZE2eb5B4uZGEDkijjXgWAexBhxrxPH9fw_1mFwGnOn3-wejB-Qq_gGPvwfRDmkVi5V_COyuSB7VbkTJ54uG208rSmHj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXK9gCX8i0WCvIBIXFwieMP7N7ahWpV1KoHViona2I77YrdpN3NqtBfzzhJVwX1UE75UJSM8sbJe2P7mZD3pVRKFMEzr1O1ymaKQZAZM-FzkDYWMkISikfHejyRh6fqtDdJSnNhbvXfI7eQn2DeMG4YZhHimasHZFMrJN0Dsjk5Ptn7keSUwabORbscabtvkIR3Jj533aH35v-LUD5cVRfw-wpms1v_loPHZHwTVTek5OfOqil2_PU_ho33CPsJ2er5Jd3rEuIp2YjVMzI8QmpcL9oKOv1AR7Mp8tT26Dn5tY95ej6HtmZOv305odOKpnUjSgx0lwK9XEHVzkTD7yKFtZEnrUuaHDq6qY8UZmf1Ytqcz5c0DaU_oyNWQBXoVUcx8Y4BFrQu1kXg5QsyOfj6fTRm_XIMLOQ2a1iSZiGgXNE-iCDKAqxWXkcTPQ_e-kKkPk4NFhR47ZOTVim0liro4FGViJdkUNVVfEUo0nqFzNSrPEYJPlgIHHxmRZTIuLQckv0EkrvoHDdc8sBuT-A7dn2TcshkjIZMqYC0szSlzZP3Hde55RiKsUOyfQOx6xvm0gmOhARFlc2H5OMa9vWDUBIl_Bzi57hxiJ9L-L3-j2vfkEdpk0Z2c7FNBs1iFd8icWmKd33S_gFauugh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+KDP+in+rainfall%3A+a+quantitative+assessment+of+estimation+algorithms+using+C-band+weather+radar+observations&rft.jtitle=Atmospheric+measurement+techniques&rft.au=M.+Aldana&rft.au=M.+Aldana&rft.au=S.+Pulkkinen&rft.au=A.+von+Lerber&rft.date=2025-02-13&rft.pub=Copernicus+Publications&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=18&rft.spage=793&rft.epage=816&rft_id=info:doi/10.5194%2Famt-18-793-2025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_90186a055d054f8f92044416291b3689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1381&client=summon