The k nearest neighbors estimation of the conditional hazard function for functional data
* In this paper, we study the nonparametric estimator of the conditional hazard function using the k nearest neighbors (k-NN) estimation method for a scalar response variable given a random variable taking values in a semi-metric space. We give the almost complete convergence (its corresponding rate...
Saved in:
| Published in | Revstat Vol. 12; no. 3; p. 273 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Instituto Nacional de Estatistica
01.11.2014
Instituto Nacional de Estatística | Statistics Portugal |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1645-6726 2183-0371 |
| DOI | 10.57805/revstat.v12i3.154 |
Cover
| Summary: | * In this paper, we study the nonparametric estimator of the conditional hazard function using the k nearest neighbors (k-NN) estimation method for a scalar response variable given a random variable taking values in a semi-metric space. We give the almost complete convergence (its corresponding rate) of this estimator and we establish the asymptotic normality. Then the effectiveness of this method is exhibited by a comparison with the kernel method estimation given in Ferraty et al. ([12]) and Laksaci and Mechab ([15]) in both cases simulated data and real data. Key-Words: * functional data; nonparametric regression; k-NN estimator; the conditional hazard function; rate of convergence; random bandwidth; asymptotic normality. AMS Subject Classification: * 62G05, 62G08, 62G20, 62G35. |
|---|---|
| ISSN: | 1645-6726 2183-0371 |
| DOI: | 10.57805/revstat.v12i3.154 |