Pediatric Pneumonia Recognition Using an Improved DenseNet201 Model with Multi-Scale Convolutions and Mish Activation Function

Pediatric pneumonia remains a significant global health issue, particularly in low- and middle-income countries, where it contributes substantially to mortality in children under five. This study introduces a deep learning model for pediatric pneumonia diagnosis from chest X-rays that surpasses the...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 2; p. 98
Main Authors Radočaj, Petra, Radočaj, Dorijan, Ma
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18020098

Cover

More Information
Summary:Pediatric pneumonia remains a significant global health issue, particularly in low- and middle-income countries, where it contributes substantially to mortality in children under five. This study introduces a deep learning model for pediatric pneumonia diagnosis from chest X-rays that surpasses the performance of state-of-the-art methods reported in the recent literature. Using a DenseNet201 architecture with a Mish activation function and multi-scale convolutions, the model was trained on a dataset of 5856 chest X-ray images, achieving high performance: 0.9642 accuracy, 0.9580 precision, 0.9506 sensitivity, 0.9542 F1 score, and 0.9507 specificity. These results demonstrate a significant advancement in diagnostic precision and efficiency within this domain. By achieving the highest accuracy and F1 score compared to other recent work using the same dataset, our approach offers a tangible improvement for resource-constrained environments where access to specialists and sophisticated equipment is limited. While the need for high-quality datasets and adequate computational resources remains a general consideration for deep learning applications, our model’s demonstrably superior performance establishes a new benchmark and offers the delivery of more timely and precise diagnoses, with the potential to significantly enhance patient outcomes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a18020098