Revisiting 129Xe electric dipole moment measurements applying a new global phase fitting approach

By measuring the spin precession frequencies of polarized 129Xe and 3He, a new upper limit on the 129Xe atomic electric dipole moment (EDM) \({d}_{\text{A}}\left({}^{129}\mathrm{X}\mathrm{e}\right)\) was reported in Sachdev et al (2019 Phys. Rev. Lett. 123, 143003). Here, we propose a new evaluation...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 23; no. 6; pp. 063076 - 63092
Main Authors Liu, Tianhao, Rolfs, Katharina, Fan, Isaac, Haude, Sophia, Kilian, Wolfgang, Li, Liyi, Schnabel, Allard, Voigt, Jens, Trahms, Lutz
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 24.06.2021
Subjects
Online AccessGet full text
ISSN1367-2630
DOI10.1088/1367-2630/ac09ca

Cover

More Information
Summary:By measuring the spin precession frequencies of polarized 129Xe and 3He, a new upper limit on the 129Xe atomic electric dipole moment (EDM) \({d}_{\text{A}}\left({}^{129}\mathrm{X}\mathrm{e}\right)\) was reported in Sachdev et al (2019 Phys. Rev. Lett. 123, 143003). Here, we propose a new evaluation method based on global phase fitting (GPF) for analyzing the continuous phase development of the 3He–129Xe comagnetometer signal. The Cramer–Rao lower bound on the 129Xe EDM for the GPF method is theoretically derived and shows the potential benefit of our new approach. The robustness of the GPF method is verified with Monte-Carlo studies. By optimizing the analysis parameters and adding data that could not be analyzed with the former method, we obtain a result of \({d}_{\text{A}}\left({}^{129}\mathrm{X}\mathrm{e}\right)=\left[1.1{\pm}3.6\enspace \left(\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\right){\pm}2.0\enspace \left(\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\right)\right]{\times}1{0}^{-28}\enspace \text{e}\enspace \mathrm{c}\mathrm{m}\) in an unblinded analysis. For the systematic uncertainty analyses, we adopted all methods from the aforementioned PRL publication except the comagnetometer phase drift, which can be omitted using the GPF method. The updated null result can be interpreted as a new upper limit of \(\vert {d}_{\text{A}}\left({}^{129}\mathrm{X}\mathrm{e}\right)\vert {< }8.3\enspace {\times}1{0}^{-28}\enspace \text{e}\enspace \mathrm{c}\mathrm{m}\) at the 95% C.L.
Bibliography:NJP-113394.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1367-2630
DOI:10.1088/1367-2630/ac09ca