TWISS: A Hybrid Multi-Criteria and Wrapper-Based Feature Selection Method for EMG Pattern Recognition in Prosthetic Applications

This paper proposes TWISS (TOPSIS + Wrapper Incremental Subset Selection), a novel hybrid feature selection framework designed for electromyographic (EMG) pattern recognition in upper-limb prosthetic control. TWISS integrates the multi-criteria decision-making method TOPSIS with a forward wrapper se...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 10; p. 633
Main Authors Polo, Aura, Cárdenas-Bolaño, Nelson, Ripoll Solano, Lácides Antonio, Luengas-Contreras, Lely A., Robles-Algarín, Carlos
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.10.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18100633

Cover

More Information
Summary:This paper proposes TWISS (TOPSIS + Wrapper Incremental Subset Selection), a novel hybrid feature selection framework designed for electromyographic (EMG) pattern recognition in upper-limb prosthetic control. TWISS integrates the multi-criteria decision-making method TOPSIS with a forward wrapper search strategy, enabling subject-specific feature optimization based on a ranking that combines filter metrics, including Chi-squared, ANOVA, and Mutual Information. Unlike conventional static feature sets, such as the Hudgins configuration (48 features: four per channel, 12 channels) or All Features (192 features: 16 per channel, 12 channels), TWISS dynamically adapts feature subsets to each subject, addressing inter-subject variability and classification robustness challenges in EMG systems. The proposed algorithm was evaluated on the publicly available Ninapro DB7 dataset, comprising both intact and transradial amputee participants, and implemented in an open-source, fully reproducible environment. Two Google Colab tools were developed to support diverse workflows: one for end-to-end feature extraction and selection, and another for selection on precomputed feature sets. Experimental results demonstrated that TWISS achieved a median F1-macro score of 0.6614 with Logistic Regression, outperforming the All Features set (0.6536) and significantly surpassing the Hudgins set (0.5626) while reducing feature dimensionality. TWISS offers a scalable and computationally efficient solution for feature selection in biomedical signal processing and beyond, promoting the development of personalized, low-cost prosthetic control systems and other resource-constrained applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a18100633