TWISS: A Hybrid Multi-Criteria and Wrapper-Based Feature Selection Method for EMG Pattern Recognition in Prosthetic Applications
This paper proposes TWISS (TOPSIS + Wrapper Incremental Subset Selection), a novel hybrid feature selection framework designed for electromyographic (EMG) pattern recognition in upper-limb prosthetic control. TWISS integrates the multi-criteria decision-making method TOPSIS with a forward wrapper se...
        Saved in:
      
    
          | Published in | Algorithms Vol. 18; no. 10; p. 633 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        08.10.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1999-4893 1999-4893  | 
| DOI | 10.3390/a18100633 | 
Cover
| Summary: | This paper proposes TWISS (TOPSIS + Wrapper Incremental Subset Selection), a novel hybrid feature selection framework designed for electromyographic (EMG) pattern recognition in upper-limb prosthetic control. TWISS integrates the multi-criteria decision-making method TOPSIS with a forward wrapper search strategy, enabling subject-specific feature optimization based on a ranking that combines filter metrics, including Chi-squared, ANOVA, and Mutual Information. Unlike conventional static feature sets, such as the Hudgins configuration (48 features: four per channel, 12 channels) or All Features (192 features: 16 per channel, 12 channels), TWISS dynamically adapts feature subsets to each subject, addressing inter-subject variability and classification robustness challenges in EMG systems. The proposed algorithm was evaluated on the publicly available Ninapro DB7 dataset, comprising both intact and transradial amputee participants, and implemented in an open-source, fully reproducible environment. Two Google Colab tools were developed to support diverse workflows: one for end-to-end feature extraction and selection, and another for selection on precomputed feature sets. Experimental results demonstrated that TWISS achieved a median F1-macro score of 0.6614 with Logistic Regression, outperforming the All Features set (0.6536) and significantly surpassing the Hudgins set (0.5626) while reducing feature dimensionality. TWISS offers a scalable and computationally efficient solution for feature selection in biomedical signal processing and beyond, promoting the development of personalized, low-cost prosthetic control systems and other resource-constrained applications. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 1999-4893 1999-4893  | 
| DOI: | 10.3390/a18100633 |