基于混合多分形小波的国际油价多期预测研究

本文综合Haar小波和乘性级联两种树型结构的优势构建一种混合多分形小波模型(H-MWM)来对国际油价进行多期预测.首先,对日度油价做Haar小波三层分解,提取粗粒度层(尺度系数)数据,对尺度系数做单步预测;其次,将日度油价做乘性级联三层分解,提取各层的细粒度(乘子)数据,对各层的乘子做预测;然后,构建尺度系数与乘子间数量关系,用预测的尺度系数和乘子,得到各层小波系数预测值;最后,将尺度系数和小波系数预测值,通过Haar小波重构为原序列粒度,得到日度油价多期预测值.实证研究表明:构建的H-MWM方法在日度油价的多期预测中,在保证预测准确度提高的同时,大大降低了计算时间复杂度....

Full description

Saved in:
Bibliographic Details
Published in计量经济学报 Vol. 1; no. 3; pp. 612 - 623
Main Authors 余乐安, 范常容, 马月明
Format Journal Article
LanguageChinese
Published 中国科学院数学与系统科学研究院 01.07.2021
中国科技出版传媒股份有限公司
Subjects
Online AccessGet full text
ISSN2096-9732
DOI10.12012/CJoE2020-0023

Cover

More Information
Summary:本文综合Haar小波和乘性级联两种树型结构的优势构建一种混合多分形小波模型(H-MWM)来对国际油价进行多期预测.首先,对日度油价做Haar小波三层分解,提取粗粒度层(尺度系数)数据,对尺度系数做单步预测;其次,将日度油价做乘性级联三层分解,提取各层的细粒度(乘子)数据,对各层的乘子做预测;然后,构建尺度系数与乘子间数量关系,用预测的尺度系数和乘子,得到各层小波系数预测值;最后,将尺度系数和小波系数预测值,通过Haar小波重构为原序列粒度,得到日度油价多期预测值.实证研究表明:构建的H-MWM方法在日度油价的多期预测中,在保证预测准确度提高的同时,大大降低了计算时间复杂度.
ISSN:2096-9732
DOI:10.12012/CJoE2020-0023