一种四叉树和测地线活动轮廓模型相结合的海陆影像分割方法

海陆影像分割对于后续的海岸线提取、潮间带地形反演、海岸演化状况分析等都具有十分重要的意义。本文在分析了四叉树、测地线活动轮廓(GAC)模型和Canny边缘检测算子等在海陆影像分割中优缺点的基础上,提出了一种四叉树、Canny算子和GAC模型相结合的海陆影像分割方法。该方法综合利用上述各方法的优点,将Canny算子边缘检测结果融入到基于四叉树初分割的GAC模型中,重构边界停止函数,演化水平集方程,实现海陆影像分割。试验结果表明,该方法具有海陆影像分割速度快、精度高、可靠性强和自动化程度高等优点,对于弱边缘以及严重凹陷边缘,都能实现自动和准确分割。...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 45; no. 1; pp. 65 - 72
Main Author 郭海涛 孙磊 申家双 陈小卫 张宏伟
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 2016
信息工程大学地理空间信息学院,河南郑州 450052
海军海洋测绘研究所,天津300061%信息工程大学地理空间信息学院,河南郑州,450052%海军海洋测绘研究所,天津,300061
Subjects
Online AccessGet full text
ISSN1001-1595
1001-1595
DOI10.11947/j.AGCS.2016.20150240

Cover

More Information
Summary:海陆影像分割对于后续的海岸线提取、潮间带地形反演、海岸演化状况分析等都具有十分重要的意义。本文在分析了四叉树、测地线活动轮廓(GAC)模型和Canny边缘检测算子等在海陆影像分割中优缺点的基础上,提出了一种四叉树、Canny算子和GAC模型相结合的海陆影像分割方法。该方法综合利用上述各方法的优点,将Canny算子边缘检测结果融入到基于四叉树初分割的GAC模型中,重构边界停止函数,演化水平集方程,实现海陆影像分割。试验结果表明,该方法具有海陆影像分割速度快、精度高、可靠性强和自动化程度高等优点,对于弱边缘以及严重凹陷边缘,都能实现自动和准确分割。
Bibliography:11-2089/P
quadtree; GAC model;Canny edge detector; island and coastal image segmentation;waterline extraction
GUO Haitao ,SUN Lei ,SHEN diashuang ,CHEN Xiaowei ,ZHANG Hongwei (1. Institute of Suveying and Mapping, Information Engineering University, Zhengzhou 450052, China; 2. Navey Institute of Hydrographic Surveying and Charting,Tianjin 300061, China)
Island and coastal image segmentation is of great importance for the subsequent coastline extraction, terrain inversion for intertidal zone, analysis of the situation for shore evolution, and so on. Firstly, the advantages and disadvantages of quadtree, geodesic active contour (GAC) model and Canny edge detector used in the island and coastal image segmentation are analyzed. Secondly, an island and coastal image segmentation method is proposed by integrating quadtree, GAC model and Canny edge detector. The advantages of these three kinds of method are taken in the method proposed in this paper. The method introduces the results of Canny edge detector into edge in
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-1595
1001-1595
DOI:10.11947/j.AGCS.2016.20150240