基于多特征融合的粒子滤波生猪采食行为跟踪
针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数...
Saved in:
Published in | 农业工程学报 Vol. 33; no. z1; pp. 246 - 252 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
同方股份有限公司,北京 100083
2017
中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2017.z1.037 |
Cover
Summary: | 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%. |
---|---|
Bibliography: | 11-2047/S feeding;tracking;algorithms;particle filter;color feature;contour centroid;verification;pig The basic behavioral characteristics of live pigs are mainly shown through daily food intake frequency, water intake frequency, and excretion frequency. These factors indicate the health states of pig growth. Monitoring and analyzing the behavioral characteristics of pigs are important basis to understand their health situations. Currently, we mainly use artificial way to monitor livestock behavior in China. This method consumes large amounts of human labor and energy, and the observed data obtained in this way is subjective. It is difficult to ensure the accuracy and the continuity of the records. We take good advantage of pig detection and tracking technology based on machine vision to monitor the behavior of pigs to evaluate the health status of pigs in time, and to reduce the morbidity and mortality of pigs and increase the slaughtering rate of pigs. It has important practical significance and application v |
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.2017.z1.037 |